15 research outputs found

    Failure mechanism and practical load-carrying capacity calculation method of welded hollow spherical joints connected with circular steel tubes

    Full text link
    p. 2679-2691According to the ultimate load-carrying capacity obtained from finite element analysis, data point is designed based on orthogonal method, utilizing F-inspection from mathematical statistics to perform multi-parameter and single-factor significance analysis of compressive load capacity. The result indicates that yield strength of spherical material fy are the critical factor that influence the load carrying capacity of hollow spherical joint, as well as wall thickness t, outer diameter of sphere D and outer diameter of steel tube d. Comparatively destructive experiments on 8 typical full-scale joints made from two different graded material, Q235B and Q345B, were conducted to understand directly the structural behavior and the collapse mechanism of the joint, and also to validate the finite element analysis and parameter study. Finally, the simplified theoretical solution is also derived for the loading-carrying capacity of the joint based on the punching shear failure model, and the basic form for the design equation is obtained. By applying the results from the simplified theoretical solution, finite element analysis and experimental study, and utilizing the theory of mathematic statistics and regression analysis, the practical calculation method is established for the load-carrying capacity of the joints subjected to axial compressive forces. By the check of large amount of experiment data, the calculation result obtained from this formula is consistent with experiment result, and the practical formula has safety reserve meeting the regulation in national codes. The achievements from this study can be applied for direct design , and also provide a reference for the revision of relevant design codes.Xue, W.; Yang, L.; Zhang, Q.; Wang, P. (2009). Failure mechanism and practical load-carrying capacity calculation method of welded hollow spherical joints connected with circular steel tubes. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/660

    Architecture of Heptagonal Metallo-macrocycles via Embedding Metal Nodes Into Its Rigid Backbone

    Get PDF
    Metal-organic macrocycles have received increasing attention not only due to their versatile applications such as molecular recognition, compounds encapsulation, anti-bacteria and others, but also for their important role in the study of structure-property relationship at nano scale. However, most of the constructions utilize benzene ring as the backbone, which restricts the ligand arm angle in the range of 60, 120 and 180 degrees. Thus, the topologies of most metallo-macrocycles are limited as triangles and hexagons, and explorations of using other backbones with large angles and the construction of metallo-macrocycles with more than six edges are very rare. In this study, we present a novel strategy for self-assembly two giant heptagonal metallo-macrocycles with an inner diameter of 5 nm, by embedding metal nodes into the ligand backbone and regulating the ligand arm angle. By complexing with metal ions, the angle between two arms at the 4,4” position of the central terpyridine (tpy) was extended, resulting in ring expansion of the metallo-macrocycle. This approach enabled the construction of giant and more complex metallo- macrocycles that could not be achieved with traditional benzene ring backbones. The characterization of complex molecules often requires the use of multiple techniques, such as multi-dimensional and multinuclear NMR and multidimensional mass spectrometry analysis. Here, we also utilized transmission electron microscopy (TEM) and ultra-high vacuum (∼E-10 torr) low-temperature (∼77 K) scanning tunneling microscopy (UHV-LT-STM) to characterize complex supramolecules. The resulting metallo-macrocycles formed hierarchical self-assembled nanotube structures at larger densities, which is observed by TEM, while UHV-LT-STM was used for direct visualization of individual complex supramolecules deposited on an Au(111) substrate. Our findings indicate that UHV-LT-STM is an effective methodology for characterizing supramolecules at a single molecule level, providing more details of the molecular structure that is difficult to resolve by the resolution of TEM.https://digitalcommons.odu.edu/gradposters2023_sciences/1005/thumbnail.jp

    Characteristics of Direct Shear and Particle Breakage of Pebble Gravel Materials

    No full text
    Particle size is an important factor affecting the Thermal-Hydraulic-Mechanical (THM) coupling behavior of graveled rock mass, especially for the shear mechanical properties. In this study, three groups of the particle size range and nine particle grading samples are designed for a large-scale direct shear test. The relationships between shear stress and shear displacement, shear strength, stress ratio, shear strength parameters, and particle breakage of pebble gravel are analyzed. The influence of particle size range and grade on the strength and particle breakage of gravel material is discussed. Results show evident particle breakage in the process of direct shear, and the degree of fragmentation is controlled by the normal load and the particle size distribution of the sample. The shear strength of the sample is no longer applicable to Mohr-Coulomb strength theory because of particle breakage that is more in line with the power function relationship. Shear strength of pebble gravel material has scale effect, and a corresponding relationship model between friction coefficient f of material and characteristic particle size of the sample is proposed

    On the Microstructure and Mechanical Properties of CrNx/Ag Multilayer Films Prepared by Magnetron Sputtering

    No full text
    CrNx/Ag multilayer coatings and a comparative CrNx single layer were deposited via reactive magnetron sputtering. In multilayer coatings, the thickness of each CrNx layer was constant at 60 nm, while that of the Ag layer was adjusted from 3 to 10 nm. Microstructure of the films was characterized by X-ray diffraction and transmission electron spectroscopy. The results suggest that the film containing 3 nm of Ag layer presents a nanocomposite structure comprising fine nano-grains and quasi-amorphous clusters. With Ag layer thickness reaching 4.5 nm and above, Ag grains coalesce to produce continuous an Ag layer and exhibit (111) preferential crystallization. Hardness of the films was detected by nanoindentation and it reveals that with increasing the Ag layer thickness, the hardness continuously decreases from 30.2 to 11.6 GPa. Wear performance of the films was examined by the ball-on-disk test at 500 °C. The result suggests that the out-diffusion of Ag towards film surface contributes to the friction reduction, while the wear performance of films depends on the thickness of the Ag layer

    Ultra-fast and accurate electron ionization mass spectrum matching for compound identification with million-scale in-silico library

    No full text
    Abstract Spectrum matching is the most common method for compound identification in mass spectrometry (MS). However, some challenges limit its efficiency, including the coverage of spectral libraries, the accuracy, and the speed of matching. In this study, a million-scale in-silico EI-MS library is established. Furthermore, an ultra-fast and accurate spectrum matching (FastEI) method is proposed to substantially improve accuracy using Word2vec spectral embedding and boost the speed using the hierarchical navigable small-world graph (HNSW). It achieves 80.4% recall@10 accuracy (88.3% with 5 Da mass filter) with a speedup of two orders of magnitude compared with the weighted cosine similarity method (WCS). When FastEI is applied to identify the molecules beyond NIST 2017 library, it achieves 50% recall@1 accuracy. FastEI is packaged as a standalone and user-friendly software for common users with limited computational backgrounds. Overall, FastEI combined with a million-scale in-silico library facilitates compound identification as an accurate and ultra-fast tool

    An Imidazole-Based Triangular Macrocycle for Visual Detection of Formaldehyde

    No full text
    Highly selective detection of formaldehyde utilizing supramolecules has promising applications in both environmental monitoring and biomonitoring areas. Herein we present a new class of imidazole-based, coordination-driven, self-assembled triangular macrocycles with specific recognition of formaldehyde. The visible fluorescence change to the naked eye from yellow to green-yellow occurs via an unusual reversible hydroxymethylation reaction of imidazole, whereas the corresponding imidazole ligands show no fluorescence change. This study provides a new method for efficient formaldehyde detection by utilizing imidazole-based coordination supramolecules

    Stepwise Self‐Assembly and Dynamic Exchange of Supramolecular Nanocages Based on Terpridine Building Blocks

    No full text
    Coordination‐driven self‐assembly as a powerful bottom‐up approach has been extensively used to construct multifarious supramolecular architectures with increasing complexity and functionality. Due to the unique cavity structures and precisely controllable dimensions, 3D supramolecules display unprecedented properties and functions in catalysis, sensing, gas storage, and smart materials. Herein, we have built two 3D nanocages with different sizes by changing the length of the organic ligand arms. The structures were characterized by 1D and 2D NMR spectroscopy, electrospray ionization‐mass spectrometry (ESI‐MS), traveling wave ion mobility‐mass spectrometry (TWIM‐MS), gradient tandem‐mass spectrometry (gMS2), and transmission electron microscopy (TEM). Furthermore, the intermolecular dynamic exchange of two 3D nanocages was conducted to construct a series of hybrid 3D structures as evidenced by mass spectrometry
    corecore