123 research outputs found

    NAQPMS-PDAF v2.0: A Novel Hybrid Nonlinear Data Assimilation System for Improved Simulation of PM2.5 Chemical Components

    Get PDF
    PM2.5, a complex mixture with diverse chemical components, exerts significant impacts on the environment, human health, and climate change. However, precisely describing spatiotemporal variations of PM2.5 chemical components remains a difficulty. In our earlier work, we developed an aerosol extinction coefficient data assimilation (DA) system (NAQPMS-PDAF v1.0) that is suboptimal for chemical components. This paper introduces a novel hybrid nonlinear chemical DA system (NAQPMS-PDAF v2.0) to accurately interpret key chemical components (SO42-, NO3-, NH4+, OC, and EC). NAQPMS-PDAF v2.0 improves upon v1.0 by effectively handing and balancing stability and nonlinearity in chemical DA, which is achieved by incorporating the non-Gaussian-distribution ensemble perturbation and hybrid Localized Kalman-Nonlinear Ensemble Transform Filter with an adaptive forgetting factor for the first time. The dependence tests demonstrate that NAQPMS-PDAF v2.0 provides excellent DA results with a minimal ensemble size of 10, surpassing previous reports and v1.0. A one-month DA experiment shows that the analysis field generated by NAQPMS-PDAF v2.0 is in good agreement with observations, especially reducing the underestimation of NH4+ and NO3- and the overestimation of SO42-, OC, and EC. In particular, the CORR values for NO3-, OC, and EC are above 0.96, and R2 values are above 0.93. NAQPMS-PDAF v2.0 also demonstrates superior spatiotemporal interpretation, with most DA sites showing improvements of over 50 %–200 % in CORR and over 50 %–90 % in RMSE for the five chemical components. Compared to the poor performance in global reanalysis dataset (CORR: 0.42–0.55, RMSE: 4.51–12.27 µg/m3) and NAQPMS-PDAF v1.0 (CORR: 0.35–0.98, RMSE: 2.46–15.50 µg/m3), NAQPMS-PDAF v2.0 has the highest CORR of 0.86–0.99 and the lowest RMSE of 0.14–3.18 µg/m3. The uncertainties in ensemble DA are also examined, further highlighting the potential of NAQPMS-PDAF v2.0 for advancing aerosol chemical component studies

    Light absorption enhancement of black carbon in urban Beijing in summer

    Get PDF
    The light absorption enhancement (E-abs) of black carbon (BC) caused by non-BC materials is an important source of uncertainty in radiative forcing estimate, yet remains poorly understood in relatively polluted environment such as the megacity Beijing. Here BC absorption enhancement at 630 nm was in-situ measured using a ther-modenuder coupled with a soot particle aerosol mass spectrometer and a single scattering albedo monitor in Beijing in summer. The project average (+/- 1 sigma) E-abs was 1.59 ( +/- 0.26), suggesting a significant amplification of BC absorption due to coating materials. E-abs presented a clear daytime increase due to enhanced photochemical processing, and a strong dependence on the mass ratios of non-BC coatings to BC (R-BC). Our results showed that the increase in E(abs )as a function of R-BC was mainly caused by the increased contributions of secondary aerosol. Further analysis showed that the BC absorption enhancement in summer in Beijing was mainly associated with secondary formation of nitrate, sulfate and highly oxidized secondary organic aerosol (SOA), while the formation of freshly and less oxidized SOA appeared not to play an important role.Peer reviewe

    Insights into vertical differences of particle number size distributions in winter in Beijing, China

    Get PDF
    Particle number size distribution (PNSD) is of importance for understanding the mechanisms of particle growth, haze formation and climate impacts. However, the measurements of PNSD aloft in megacities are very limited. Here we report the first simultaneous winter measurements of size-resolved particle number concentrations along with collocated gaseous species and aerosol composition at ground level and 260 m in Beijing. Our study showed that the vertical differences of particle number concentrations between ground level and aloft varied significantly as a function of particle size throughout the study. Further analysis illustrated the impacts of boundary dynamics and meteorological conditions on the vertical differences of PNSD. In particular, the temperature and relative humidity inversions were one of the most important factors by decoupling the boundary layer into different sources and processes. Positive matrix factorization analysis identified six sources of PNSD at both ground level and city aloft. The local source emissions dominantly contributed to Aitken-mode particles, and showed the largest vertical gradients in the city. Comparatively, the regional particles were highly correlated between ground level and city aloft, and the vertical differences were relatively stable throughout the day. Our results point to-wards a complex vertical evolution of PNSD due to the changes in boundary layer dynamics, meteorological con-ditions, sources, and processes in megacities. (c) 2021 Elsevier B.V. All rights reserved.Peer reviewe

    Impact of biogenic SOA loading on the molecular composition of wintertime PM2.5 in urban Tianjin: an insight from Fourier transform ion cyclotron resonance mass spectrometry

    Get PDF
    Biomass burning is one of the key sources of urban aerosols in the North China Plain, especially in winter when the impact of secondary organic aerosols (SOA) formed from biogenic volatile organic compounds (BVOCs) is generally considered to be minor. However, little is known about the influence of biogenic SOA loading on the molecular composition of wintertime organic aerosols. Here, we investigated the water-soluble organic compounds in fine particles (PM2.5) from urban Tianjin by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Our results show that most of the CHO and CHON compounds were derived from biomass burning; they contain O-poor and highly unsaturated compounds with aromatic rings, which are sensitive to photochemical reactions, and some of which probably contribute to light-absorbing chromophores. Under moderate to high SOA loading conditions, the nocturnal chemistry is more efficient than photooxidation to generate secondary CHO and CHON compounds with high oxygen content. Under low SOA-loading, secondary CHO and CHON compounds with low oxygen content are mainly formed by photochemistry. Secondary CHO compounds are mainly derived from oxidation of monoterpenes. But nocturnal chemistry may be more productive to sesquiterpene-derived CHON compounds. In contrast, the number- and intensity-weight of S-containing groups (CHOS and CHONS) increased significantly with the increase of biogenic SOA-loading, which agrees with the fact that a majority of the S-containing groups are identified as organosulfates and nitrooxy-organosulfates that are derived from the oxidation of BVOCs. Terpenes may be potential major contributors to the chemical diversity of organosulfates and nitrooxy-organosulfates under photo-oxidation. While the nocturnal chemistry is more beneficial to the formation of organosulfates and nitrooxy-organosulfates under low SOA-loading. The SOA-loading is an important factor associating with the oxidation degree, nitrate group content and chemodiversity of nitrooxy-organosulfates. Furthermore, our study suggests that the hydrolysis of nitrooxy-organosulfates is a possible pathway for the formation of organosulfates.</p

    A 3D study on the amplification of regional haze and particle growth by local emissions

    Get PDF
    The role of new particle formation (NPF) events and their contribution to haze formation through subsequent growth in polluted megacities is still controversial. To improve the understanding of the sources, meteorological conditions, and chemistry behind air pollution, we performed simultaneous measurements of aerosol composition and particle number size distributions at ground level and at 260 m in central Beijing, China, during a total of 4 months in 2015-2017. Our measurements show a pronounced decoupling of gas-to-particle conversion between the two heights, leading to different haze processes in terms of particle size distributions and chemical compositions. The development of haze was initiated by the growth of freshly formed particles at both heights, whereas the more severe haze at ground level was connected directly to local primary particles and gaseous precursors leading to higher particle growth rates. The particle growth creates a feedback loop, in which a further development of haze increases the atmospheric stability, which in turn strengthens the persisting apparent decoupling between the two heights and increases the severity of haze at ground level. Moreover, we complemented our field observations with model analyses, which suggest that the growth of NPF-originated particles accounted up to similar to 60% of the accumulation mode particles in the Beijing-Tianjin-Hebei area during haze conditions. The results suggest that a reduction in anthropogenic gaseous precursors, suppressing particle growth, is a critical step for alleviating haze although the number concentration of freshly formed particles (3-40 nm) via NPF does not reduce after emission controls.Peer reviewe
    corecore