124 research outputs found

    Deregulation of HDAC5 by Viral Interferon Regulatory Factor 3 Plays an Essential Role in Kaposi's Sarcoma-Associated Herpesvirus-Induced Lymphangiogenesis.

    Get PDF
    Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent for Kaposi's sarcoma (KS), which is one of the most common HIV-associated neoplasms. The endothelium is the thin layer of squamous cells where vascular blood endothelial cells (BECs) line the interior surface of blood vessels and lymphatic endothelial cells (LECs) are in direct contact with lymphatic vessels. The KS lesions contain a prominent compartment of neoplastic spindle morphology cells that are closely related to LECs. Furthermore, while KSHV can infect both LECs and BECs in vitro, its infection activates genetic programming related to lymphatic endothelial cell fate, suggesting that lymphangiogenic pathways are involved in KSHV infection and malignancy. Here, we report for the first time that viral interferon regulatory factor 3 (vIRF3) is readily detected in over 40% of KS lesions and that vIRF3 functions as a proangiogenic factor, inducing hypersprouting formation and abnormal growth in a LEC-specific manner. Mass spectrometry analysis revealed that vIRF3 interacted with histone deacetylase 5 (HDAC5), which is a signal-responsive regulator for vascular homeostasis. This interaction blocked the phosphorylation-dependent cytosolic translocation of HDAC5 and ultimately altered global gene expression in LECs but not in BECs. Consequently, vIRF3 robustly induced spindle morphology and hypersprouting formation of LECs but not BECs. Finally, KSHV infection led to the hypersprouting formation of LECs, whereas infection with a ΔvIRF3 mutant did not do so. Collectively, our data indicate that vIRF3 alters global gene expression and induces a hypersprouting formation in an HDAC5-binding-dependent and LEC-specific manner, ultimately contributing to KSHV-associated pathogenesis.IMPORTANCE Several lines of evidences indicate that KSHV infection of LECs induces pathological lymphangiogenesis and that the results resemble KS-like spindle morphology. However, the underlying molecular mechanism remains unclear. Here, we demonstrated that KSHV vIRF3 is readily detected in over 40% of various KS lesions and functions as a potent prolymphangiogenic factor by blocking the phosphorylation-dependent cytosolic translocation of HDAC5, which in turn modulates global gene expression in LECs. Consequently, vIRF3-HDAC5 interaction contributes to virus-induced lymphangiogenesis. The results of this study suggest that KSHV vIRF3 plays a crucial role in KSHV-induced malignancy

    Learning to Check Contract Inconsistencies

    Full text link
    Contract consistency is important in ensuring the legal validity of the contract. In many scenarios, a contract is written by filling the blanks in a precompiled form. Due to carelessness, two blanks that should be filled with the same (or different)content may be incorrectly filled with different (or same) content. This will result in the issue of contract inconsistencies, which may severely impair the legal validity of the contract. Traditional methods to address this issue mainly rely on manual contract review, which is labor-intensive and costly. In this work, we formulate a novel Contract Inconsistency Checking (CIC) problem, and design an end-to-end framework, called Pair-wise Blank Resolution (PBR), to solve the CIC problem with high accuracy. Our PBR model contains a novel BlankCoder to address the challenge of modeling meaningless blanks. BlankCoder adopts a two-stage attention mechanism that adequately associates a meaningless blank with its relevant descriptions while avoiding the incorporation of irrelevant context words. Experiments conducted on real-world datasets show the promising performance of our method with a balanced accuracy of 94.05% and an F1 score of 90.90% in the CIC problem.Comment: Accepted by AAAI 202

    Inhibition of T Cell Receptor Signal Transduction by Tyrosine Kinase–interacting Protein of Herpesvirus saimiri

    Get PDF
    T cells play a central role in orchestrating immunity against pathogens, particularly viruses. Thus, impairing T cell activation is an important strategy employed by viruses to escape host immune control. The tyrosine kinase–interacting protein (Tip) of the T lymphotropic Herpesvirus saimiri (HVS) is constitutively present in lipid rafts and interacts with cellular Lck tyrosine kinase and p80 endosomal protein. Here we demonstrate that, due to the sequestration of Lck by HVS Tip, T cell receptor (TCR) stimulation fails to activate ZAP70 tyrosine kinase and to initiate downstream signaling events. TCR ζ chains in Tip-expressing T cells were initially phosphorylated to recruit ZAP70 molecule upon TCR stimulation, but the recruited ZAP70 kinase was not subsequently phosphorylated, resulting in TCR complexes that were stably associated with inactive ZAP70 kinase. Consequently, Tip expression not only markedly inhibited TCR-mediated intracellular signal transduction but also blocked TCR engagement with major histocompatibility complexes on the antigen-presenting cells and immunological synapse formation. These results demonstrate that a lymphotropic herpesvirus has evolved a novel mechanism to deregulate T cell activation to disarm host immune surveillance. This process contributes to the establishment and maintenance of viral latency

    A Novel Inhibitory Mechanism of Mitochondrion-Dependent Apoptosis by a Herpesviral Protein

    Get PDF
    Upon viral infection, cells undergo apoptosis as a defense against viral replication. Viruses, in turn, have evolved elaborate mechanisms to subvert apoptotic processes. Here, we report that a novel viral mitochondrial anti-apoptotic protein (vMAP) of murine γ-herpesvirus 68 (γHV-68) interacts with Bcl-2 and voltage-dependent anion channel 1 (VDAC1) in a genetically separable manner. The N-terminal region of vMAP interacted with Bcl-2, and this interaction markedly increased not only Bcl-2 recruitment to mitochondria but also its avidity for BH3-only pro-apoptotic proteins, thereby suppressing Bax mitochondrial translocation and activation. In addition, the central and C-terminal hydrophobic regions of vMAP interacted with VDAC1. Consequently, these interactions resulted in the effective inhibition of cytochrome c release, leading to the comprehensive inhibition of mitochondrion-mediated apoptosis. Finally, vMAP gene was required for efficient γHV-68 lytic replication in normal cells, but not in mitochondrial apoptosis-deficient cells. These results demonstrate that γHV-68 vMAP independently targets two important regulators of mitochondrial apoptosis-mediated intracellular innate immunity, allowing efficient viral lytic replication

    Kaposi's Sarcoma-Associated Herpesvirus K7 Induces Viral G Protein-Coupled Receptor Degradation and Reduces Its Tumorigenicity

    Get PDF
    The Kaposi's sarcoma-associated herpesvirus (KSHV) genome encodes a G protein-coupled receptor (vGPCR). vGPCR is a ligand-independent, constitutively active signaling molecule that promotes cell growth and proliferation; however, it is not clear how vGPCR is negatively regulated. We report here that the KSHV K7 small membrane protein interacts with vGPCR and induces its degradation, thereby dampening vGPCR signaling. K7 interaction with vGPCR is readily detected in transiently transfected human cells. Mutational analyses reveal that the K7 transmembrane domain is necessary and sufficient for this interaction. Biochemical and confocal microscopy studies indicate that K7 retains vGPCR in the endoplasmic reticulum (ER) and induces vGPCR proteasomeal degradation. Indeed, the knockdown of K7 by shRNA-mediated silencing increases vGPCR protein expression in BCBL-1 cells that are induced for KSHV lytic replication. Interestingly, K7 expression significantly reduces vGPCR tumorigenicity in nude mice. These findings define a viral factor that negatively regulates vGPCR protein expression and reveal a post-translational event that modulates GPCR-dependent transformation and tumorigenicity

    Murine Gamma Herpesvirus 68 Hijacks MAVS and IKKβ to Abrogate NFκB Activation and Antiviral Cytokine Production

    Get PDF
    Upon viral infection, mitochondrial antiviral signaling (MAVS) protein serves as a key adaptor to promote cytokine production. We report here that murine gamma herpesvirus 68 (γHV68), a model virus for oncogenic human gamma herpesviruses, subverts cytokine production via the MAVS adaptor. During early infection, γHV68 hijacks MAVS and IKKβ to induce the site-specific phosphorylation of RelA, a crucial subunit of the transcriptionally active NFκB dimer, which primes RelA for the proteasome-mediated degradation. As such, γHV68 efficiently abrogated NFκB activation and cytokine gene expression. Conversely, uncoupling RelA degradation from γHV68 infection promoted NFκB activation and elevated cytokine production. Loss of MAVS increased cytokine production and immune cell infiltration in the lungs of γHV68-infected mice. Moreover, exogenous expression of the phosphorylation- and degradation-resistant RelA variant restored γHV68-induced cytokine production. Our findings uncover an intricate strategy whereby signaling via the upstream MAVS adaptor is intercepted by a pathogen to nullify the immediate downstream effector, RelA, of the innate immune pathway

    The Ubiquitin/Proteasome System Mediates Entry and Endosomal Trafficking of Kaposi's Sarcoma-Associated Herpesvirus in Endothelial Cells

    Get PDF
    Ubiquitination, a post-translational modification, mediates diverse cellular functions including endocytic transport of molecules. Kaposi's sarcoma-associated herpesvirus (KSHV), an enveloped herpesvirus, enters endothelial cells primarily through clathrin-mediated endocytosis. Whether ubiquitination and proteasome activity regulates KSHV entry and endocytosis remains unknown. We showed that inhibition of proteasome activity reduced KSHV entry into endothelial cells and intracellular trafficking to nuclei, thus preventing KSHV infection of the cells. Three-dimensional (3-D) analyses revealed accumulation of KSHV particles in a cytoplasmic compartment identified as EEA1+ endosomal vesicles upon proteasome inhibition. KSHV particles are colocalized with ubiquitin-binding proteins epsin and eps15. Furthermore, ubiquitination mediates internalization of both KSHV and one of its receptors integrin β1. KSHV particles are colocalized with activated forms of the E3 ligase c-Cbl. Knock-down of c-Cbl or inhibition of its phosphorylation reduced viral entry and intracellular trafficking, resulting in decreased KSHV infectivity. These results demonstrate that ubiquitination mediates internalization of both KSHV and one of its cognate receptors integrin β1, and identify c-Cbl as a potential E3 ligase that facilitates this process

    Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation

    Get PDF
    In this paper, we consider a two-sided space-fractional diffusion equation with variable coefficients on a finite domain. Firstly, based on the nodal basis functions, we present a new fractional finite volume method for the two-sided space-fractional diffusion equation and derive the implicit scheme and solve it in matrix form. Secondly, we prove the stability and convergence of the implicit fractional finite volume method and conclude that the method is unconditionally stable and convergent. Finally, some numerical examples are given to show the effectiveness of the new numerical method, and the results are in excellent agreement with theoretical analysis
    • …
    corecore