3 research outputs found
Street Gangs, Group Identity and Their Relation to Gang Violence: An Analysis of Street Gangs in El Salvador
The multinuclear metal–ligand supramolecular synthon
R–CC⊃Ag<sub><i>n</i></sub> (R = alkyl,
cycloalkyl; <i>n</i> = 3, 4, 5) has been employed to construct
two high-nuclearity silver
ethynide cluster compounds, [Cl<sub>6</sub>Ag<sub>8</sub>@Ag<sub>30</sub>(<sup><i>t</i></sup>BuCC)<sub>20</sub>(ClO<sub>4</sub>)<sub>12</sub>]·Et<sub>2</sub>O (<b>1</b>) and
[Cl<sub>6</sub>Ag<sub>8</sub>@Ag<sub>30</sub>(chxCî—¼C)<sub>20</sub>(ClO<sub>4</sub>)<sub>10</sub>]Â(ClO<sub>4</sub>)<sub>2</sub>·1.5Et<sub>2</sub>O (chx = cyclohexyl) (<b>2</b>), that bear the same
novel Cl<sub>6</sub>Ag<sub>8</sub> central core. The synthesis of <b>1</b> made use of [Cl@Ag<sub>14</sub>(<sup><i>t</i></sup>BuCî—¼C)<sub>12</sub>]ÂOH as a precursor, and its reaction with
AgClO<sub>4</sub> in CH<sub>2</sub>Cl<sub>2</sub> resulted in an increase
in nuclearity from 14 to 38. The results presented here strongly suggest
that the formation of multinuclear silver ethynide cage complexes <b>1</b> and <b>2</b> proceeds by a reassembly process in solution
that involves transformation of the encapsulated chloride template
within a Ag<sub>14</sub> cage into a cationic pseudo-<i>O</i><sub><i>h</i></sub> Cl<sub>6</sub>Ag<sub>8</sub> inner
core, leading to the generation of a much enlarged Cl<sub>6</sub>Ag<sub>8</sub>@Ag<sub>30</sub> cluster within a cluster. To our knowledge,
this provides the first example of the conversion of a silver cluster
into one of higher nuclearity via inner-core transformation
Ligand-Induced Assembly of Coordination Chains and Columns Containing High-Nuclearity Silver(I) Ethynide Cluster Units
The multinuclear metal–ligand
supramolecular synthon RC<sub>6</sub>H<sub>4</sub>CC⊃Ag<sub><i>n</i></sub> (R = Me, F; <i>n</i> = 3–5)
has been employed to
construct the two high-nuclearity silver ethynide cluster compounds
[(NO<sub>3</sub>)<sub>2</sub>@Ag<sub>26</sub>(<i>o</i>-MeC<sub>6</sub>H<sub>4</sub>Cî—¼C)<sub>16</sub>]Â(NO<sub>3</sub>)<sub>8</sub>·5H<sub>2</sub>O (<b>1</b>) and [NO<sub>3</sub>@Ag<sub>15</sub>(<i>o</i>-FC<sub>6</sub>H<sub>4</sub>Cî—¼C)<sub>10</sub>]Â(NO<sub>3</sub>)<sub>4</sub> (<b>2</b>), which bear
the same nitrate central core. The synthesis of [CrO<sub>4</sub>@Ag<sub>18</sub>(<i>i</i>PrCî—¼C)<sub>12</sub>]Â(ClO<sub>4</sub>)<sub>4</sub> (<b>3</b>) and [ClO<sub>4</sub>@Ag<sub>18</sub>(<i>i</i>PrCî—¼C)<sub>12</sub>]Â(ClO<sub>4</sub>)<sub>5</sub> (<b>4</b>) demonstrated the effect of variation of
central anionic core size and charge on the construction of multidimensional
organosilverÂ(I) networks. The bulkiness of the peripheral ligands
and the orientation of substituents with respect to the ethynide group
proved to be dominant factors that direct the formation of high-nuclearity
clusters and the assembly of coordination networks. To our knowledge, <b>1</b> and <b>2</b> are the first examples using the nitrate
anion for templated cluster synthesis
Argentophilic Infinite Chain, Column, and Layer Structures Assembled with the Multinuclear Silver(I)–Phenylethynide Supramolecular Synthon
Nine silverÂ(I) complexes bearing the phenylethynide ligand
and
different ancillary anions, namely, double salts AgCî—¼CPh·AgNO<sub>3</sub> (<b>1</b>), 2AgCî—¼CPh·AgNO<sub>3</sub> (<b>2</b>), [Ag<sub>5</sub>(Cî—¼CPh)<sub>4</sub>(DMSO)<sub>2</sub>]ÂX [X = BF<sub>4</sub> (<b>3A</b>), ClO<sub>4</sub> (<b>3B</b>), PF<sub>6</sub> (<b>3C</b>), AsF<sub>6</sub> (<b>3D</b>), SbF<sub>6</sub> (<b>3E</b>)], 2AgCî—¼CPh·5AgO<sub>2</sub>CCF<sub>3</sub>·4DMSO (<b>4</b>), and a triple
salt 10AgCCPh·2AgOTf·AgNO<sub>3</sub>·3DMSO
(<b>5</b>), have been synthesized and shown to possess coordination
frameworks that are assembled with the supramolecular synthon Ph–CC⊃Ag<sub><i>n</i></sub> (<i>n</i> = 3, 4, 5). Different
argentophilic layers are found in nitrate complexes <b>1</b> and <b>2</b>, which are crystallized from water and mixed
water/DMSO, respectively. Difficulty was encountered in growing quality
crystals of complexes <b>3A</b>–<b>3E</b>,<b> 4</b>, and <b>5</b> bearing weakly coordinating anions,
but DMSO proved to be a good solvent for crystallization by functioning
as a coligand. The isostructural compounds <b>3A</b>–<b>3E</b> exhibit the same type of pseudohexagonal packing of infinite
silver columns, with the ancillary anionic component filling the intervening
space and linking adjacent columns via weak hydrogen bonds. Three-dimensional
supramolecular frameworks based on similar packing of silver chains
and columns, respectively, are found in double salt <b>4</b> and triple salt <b>5</b>