3 research outputs found

    Street Gangs, Group Identity and Their Relation to Gang Violence: An Analysis of Street Gangs in El Salvador

    No full text
    The multinuclear metal–ligand supramolecular synthon R–CC⊃Ag<sub><i>n</i></sub> (R = alkyl, cycloalkyl; <i>n</i> = 3, 4, 5) has been employed to construct two high-nuclearity silver ethynide cluster compounds, [Cl<sub>6</sub>Ag<sub>8</sub>@Ag<sub>30</sub>(<sup><i>t</i></sup>BuCC)<sub>20</sub>(ClO<sub>4</sub>)<sub>12</sub>]·Et<sub>2</sub>O (<b>1</b>) and [Cl<sub>6</sub>Ag<sub>8</sub>@Ag<sub>30</sub>(chxCC)<sub>20</sub>(ClO<sub>4</sub>)<sub>10</sub>]­(ClO<sub>4</sub>)<sub>2</sub>·1.5Et<sub>2</sub>O (chx = cyclohexyl) (<b>2</b>), that bear the same novel Cl<sub>6</sub>Ag<sub>8</sub> central core. The synthesis of <b>1</b> made use of [Cl@Ag<sub>14</sub>(<sup><i>t</i></sup>BuCC)<sub>12</sub>]­OH as a precursor, and its reaction with AgClO<sub>4</sub> in CH<sub>2</sub>Cl<sub>2</sub> resulted in an increase in nuclearity from 14 to 38. The results presented here strongly suggest that the formation of multinuclear silver ethynide cage complexes <b>1</b> and <b>2</b> proceeds by a reassembly process in solution that involves transformation of the encapsulated chloride template within a Ag<sub>14</sub> cage into a cationic pseudo-<i>O</i><sub><i>h</i></sub> Cl<sub>6</sub>Ag<sub>8</sub> inner core, leading to the generation of a much enlarged Cl<sub>6</sub>Ag<sub>8</sub>@Ag<sub>30</sub> cluster within a cluster. To our knowledge, this provides the first example of the conversion of a silver cluster into one of higher nuclearity via inner-core transformation

    Ligand-Induced Assembly of Coordination Chains and Columns Containing High-Nuclearity Silver(I) Ethynide Cluster Units

    No full text
    The multinuclear metal–ligand supramolecular synthon RC<sub>6</sub>H<sub>4</sub>CC⊃Ag<sub><i>n</i></sub> (R = Me, F; <i>n</i> = 3–5) has been employed to construct the two high-nuclearity silver ethynide cluster compounds [(NO<sub>3</sub>)<sub>2</sub>@Ag<sub>26</sub>(<i>o</i>-MeC<sub>6</sub>H<sub>4</sub>CC)<sub>16</sub>]­(NO<sub>3</sub>)<sub>8</sub>·5H<sub>2</sub>O (<b>1</b>) and [NO<sub>3</sub>@Ag<sub>15</sub>(<i>o</i>-FC<sub>6</sub>H<sub>4</sub>CC)<sub>10</sub>]­(NO<sub>3</sub>)<sub>4</sub> (<b>2</b>), which bear the same nitrate central core. The synthesis of [CrO<sub>4</sub>@Ag<sub>18</sub>(<i>i</i>PrCC)<sub>12</sub>]­(ClO<sub>4</sub>)<sub>4</sub> (<b>3</b>) and [ClO<sub>4</sub>@Ag<sub>18</sub>(<i>i</i>PrCC)<sub>12</sub>]­(ClO<sub>4</sub>)<sub>5</sub> (<b>4</b>) demonstrated the effect of variation of central anionic core size and charge on the construction of multidimensional organosilver­(I) networks. The bulkiness of the peripheral ligands and the orientation of substituents with respect to the ethynide group proved to be dominant factors that direct the formation of high-nuclearity clusters and the assembly of coordination networks. To our knowledge, <b>1</b> and <b>2</b> are the first examples using the nitrate anion for templated cluster synthesis

    Argentophilic Infinite Chain, Column, and Layer Structures Assembled with the Multinuclear Silver(I)–Phenylethynide Supramolecular Synthon

    No full text
    Nine silver­(I) complexes bearing the phenylethynide ligand and different ancillary anions, namely, double salts AgCCPh·AgNO<sub>3</sub> (<b>1</b>), 2AgCCPh·AgNO<sub>3</sub> (<b>2</b>), [Ag<sub>5</sub>(CCPh)<sub>4</sub>(DMSO)<sub>2</sub>]­X [X = BF<sub>4</sub> (<b>3A</b>), ClO<sub>4</sub> (<b>3B</b>), PF<sub>6</sub> (<b>3C</b>), AsF<sub>6</sub> (<b>3D</b>), SbF<sub>6</sub> (<b>3E</b>)], 2AgCCPh·5AgO<sub>2</sub>CCF<sub>3</sub>·4DMSO (<b>4</b>), and a triple salt 10AgCCPh·2AgOTf·AgNO<sub>3</sub>·3DMSO (<b>5</b>), have been synthesized and shown to possess coordination frameworks that are assembled with the supramolecular synthon Ph–CC⊃Ag<sub><i>n</i></sub> (<i>n</i> = 3, 4, 5). Different argentophilic layers are found in nitrate complexes <b>1</b> and <b>2</b>, which are crystallized from water and mixed water/DMSO, respectively. Difficulty was encountered in growing quality crystals of complexes <b>3A</b>–<b>3E</b>,<b> 4</b>, and <b>5</b> bearing weakly coordinating anions, but DMSO proved to be a good solvent for crystallization by functioning as a coligand. The isostructural compounds <b>3A</b>–<b>3E</b> exhibit the same type of pseudohexagonal packing of infinite silver columns, with the ancillary anionic component filling the intervening space and linking adjacent columns via weak hydrogen bonds. Three-dimensional supramolecular frameworks based on similar packing of silver chains and columns, respectively, are found in double salt <b>4</b> and triple salt <b>5</b>
    corecore