1,806 research outputs found

    IMMEDIATE EFFECTS OF WARM UP BY OVERWEIGHED BAT IMPLEMENT ON BAT SWING VELOCITY

    Get PDF
    The purpose of this study was to investigate the immediate effects of warming up by overweighed bat implement on bat swing velocity. Five softball players worked in this experiment and processed the following steps: swing official bat with and without overweight warm-ups (5 and 10 times). The maximal velocity of official bat swing was recorded by a 3-D cinematograph. By one-way ANOVA, the results were described as follows: the maximal velocity of official bat swing after 5-swingings of the overweight bat was greater than that without warm up (F=9.28,

    EFFECT OF SHORT MEDIALSIDE STUDS OM FOOT BIOMECHANICS IN COLLEGIATE SOCCER PLAYERS

    Get PDF
    The purpose of this study was to examine the effect of modified stud on ankle and foot kinematics, ground reaction force and forefoot force and pressure during sidestep cut (SC) and change direction (CD) movement 6 male collegiate soccer players wore original and medial-side 2mm cut stud shoes and performed SC and CD on the artificial grass. Non-parametric Wilcoxon signed-rank test was used to compare difference between the original and modified studs. The modified stud of non-dominant leg show less inversion than the original stud in SC and CD. The modified stud of non-dominant leg show more force peak form and pressure and that of nondominant legs show more pressure an the original stud during SC and CD. The short medial-side studs with 2mm length can decrease the force inversion of the nondmiiant leg during SC and CD movement and increase the force production of the lower extremities in recreational soccer players

    Future change in extreme precipitation in East Asian spring and Mei-yu seasons in two high-resolution AGCMs

    Get PDF
    Precipitation in the spring and Mei-yu seasons, the main planting and growing period in East Asia, is crucial to water resource management. Changes in spring and Mei-yu extreme precipitation under global warming are evaluated based on two sets of high-resolution simulations with various warming pattern of sea surface temperature (SST'spa). In the spring season, extreme precipitation exhibits larger enhancements over the northern flank of the present-day prevailing rainy region and a tendency of increased occurrence and enhanced intensity in the probability distribution. These changes imply a northward extension of future spring rainband. Although the mean precipitation shows minor change, enhanced precipitation intensity, less total rainfall occurrence, and prolonged consecutive dry days suggest a more challenging water resource management in the warmer climate. The projected enhancement in precipitation intensity is robust compared with the internal variability related to initial conditions (σˆint) and the uncertainty caused by SST'spa (σˆΔSST). In the Mei-yu season, extreme precipitation strengthens and becomes more frequent over the present-day prevailing rainband region. The thermodynamic component of moisture flux predominantly contributes to the changes in the spring season. In the Mei-yu season, both the thermodynamic and dynamic components of moisture flux enhance the moisture transport and intensify the extreme precipitation from southern China to northeast Asia. Compared with spring season, projecting future Mei-yu precipitation is more challenging because of its higher uncertainty associated with 1) the σˆint and σˆΔSST embedded in the projections and 2) the model characteristics of present-day climatology that determines the spatial distribution of precipitation enhancement.publishedVersio

    γ\gamma-SUP: A clustering algorithm for cryo-electron microscopy images of asymmetric particles

    Full text link
    Cryo-electron microscopy (cryo-EM) has recently emerged as a powerful tool for obtaining three-dimensional (3D) structures of biological macromolecules in native states. A minimum cryo-EM image data set for deriving a meaningful reconstruction is comprised of thousands of randomly orientated projections of identical particles photographed with a small number of electrons. The computation of 3D structure from 2D projections requires clustering, which aims to enhance the signal to noise ratio in each view by grouping similarly oriented images. Nevertheless, the prevailing clustering techniques are often compromised by three characteristics of cryo-EM data: high noise content, high dimensionality and large number of clusters. Moreover, since clustering requires registering images of similar orientation into the same pixel coordinates by 2D alignment, it is desired that the clustering algorithm can label misaligned images as outliers. Herein, we introduce a clustering algorithm γ\gamma-SUP to model the data with a qq-Gaussian mixture and adopt the minimum γ\gamma-divergence for estimation, and then use a self-updating procedure to obtain the numerical solution. We apply γ\gamma-SUP to the cryo-EM images of two benchmark macromolecules, RNA polymerase II and ribosome. In the former case, simulated images were chosen to decouple clustering from alignment to demonstrate γ\gamma-SUP is more robust to misalignment outliers than the existing clustering methods used in the cryo-EM community. In the latter case, the clustering of real cryo-EM data by our γ\gamma-SUP method eliminates noise in many views to reveal true structure features of ribosome at the projection level.Comment: Published in at http://dx.doi.org/10.1214/13-AOAS680 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Optimization of venous return tubing diameter for cardiopulmonary bypass

    Get PDF
    Objective: To determine the optimal venous tubing diameter for adult cardiopulmonary bypass (CPB) to improve gravity drainage and to reduce priming volume. Methods: (A) Maximum bovine blood flow rates by gravity drainage were assessed in vitro for four different tubing diameters (1/2, 3/8, 5/16,1/4 inch) with three different lengths and various pre- and afterloads. Based on the results of (A) and multiple regression analyses, we developed equations to predict tubing sizes as a function of target flows. (C) The equations obtained in (B) were validated by ex vivo bovine experiments. (D) The clinically required maximal flows were determined retrospectively by reviewing 119 perfusion records at Zurich University. (E) Based on our model (B), the clinical patient and hardware requirements, the optimal venous tubing diameter was calculated. (F) The optimized venous tubing was evaluated in a prospective clinical trial involving 312 patients in Hangzhou. Results: For a mean body surface area of 1.83±0.2 m2, the maximal perfusion flow rate (D) achieved with 1/2-inch (=1.27 cm2) venous tubing was 4.62±0.57 l/min (range: 2.50-6.24 l/min). Our validated model (B,C) predicted 1.0 cm2 as optimal cross-sectional area for the venous line. New tubing packs developed accordingly were used routinely thereafter. The maximal flow rate was 4.93±0.58 l/min (range: 3.9-7.0) in patients with a mean body surface area of 1.62±0.21 m2. Conclusion: The new venous tubing with 1.0-cm2 cross-sectional area improves the drainage in the vast majority of adult patients undergoing CPB and reduces the priming volume (−27 ml/m). Reduced hemodilution can prevent homologous transfusions if a predefined transfusion trigger level is not reache

    Direct synthesis of ultrafine tetragonal BaTiO3 nanoparticles at room temperature

    Get PDF
    A large quantity of ultrafine tetragonal barium titanate (BaTiO3) nanoparticles is directly synthesized at room temperature. The crystalline form and grain size are checked by both X-ray diffraction and transmission electron microscopy. The results revealed that the perovskite nanoparticles as fine as 7 nm have been synthesized. The phase transition of the as-prepared nanoparticles is investigated by the temperature-dependent Raman spectrum and shows the similar tendency to that of bulk BaTiO3 materials. It is confirmed that the nanoparticles have tetragonal phase at room temperature

    In-vivo transfection of pcDNA3.1-IGFBP7 inhibits melanoma growth in mice through apoptosis induction and VEGF downexpression

    Get PDF
    BACKGROUND: Genome-wide RNA interference screening study revealed that loss of expression of insulin-like growth factor binding protein 7 (IGFBP7) is a critical step in development of a malignant melanoma (MM), and this secreted protein plays a central role in apoptosis of MM. In this study we constructed pcDNA3.1-IGFBP7 to obtain high expression of IGBPF7 and to inhibit the growth of MM in C57BL/6J mice. METHODS: pcDNA3.1-IGFBP7 was transfected into B16-F10 cell, the expression of IGFBP7 was detected by RT-PCR and western blot. The proliferations and apoptosis rates of transfected and control cells were measured by CCK8 and FCM, respectively. The tumorigenicity and tumor growth in both pcDNA3.1-IGFBP7 group and control groups were studied in C57BL/6J mice model. IGFBP7, caspase-3, and VEGF expressions in tumor tissue were measured by immunohistochemistry. Apoptosis of tumors were detected by TUNEL. RESULTS: We demonstrated this plasmid inhibited proliferation of B16-F10 melanoma cells efficiently in vivo, exploiting the high expression of IGFBP7. More importantly, in-vivo transfection of pcDNA3.1-IGFBP7 inhibited MM growth in C57BL/6J mice. The inhibition of MM growth was proved owing to apoptosis and reduced expression of VEGF induced by pcDNA3.1-IGFBP7. CONCLUSIONS: These results suggest a potential new clinical strategy for MM gene treatment
    corecore