13 research outputs found

    Sucrose rescues seedling establishment but not germination of Arabidopsis mutants disrupted in peroxisomal fatty acid catabolism

    No full text
    The Arabidopsis acyl-CoA oxidase (ACX) family comprises isozymes with distinct fatty acid chain-length specificities that together catalyse the first step of peroxisomal fatty acid β-oxidation. We have isolated and characterized T-DNA insertion mutants in the medium to long-chain (ACX1) and long-chain (ACX2) acyl-CoA oxidases, and show that the corresponding endogenous activities are decreased in the mutants. Lipid catabolism during germination and early post-germinative growth was unaltered in the acx1-1 mutant, but slightly delayed in the acx2-1 mutant, with 3-day-old acx2-1 seedlings accumulating long-chain acyl-CoAs. In acx1-1 and acx2-1, seedling growth and establishment in the absence of an exogenous supply of sucrose was unaffected. Seedlings of the double mutant acx1-1 acx2-1 were unable to catabolize seed storage lipid, and accumulated long-chain acyl-CoAs. The acx1-1 acx2-1 seedlings were also unable to establish photosynthetic competency in the absence of an exogenous carbon supply, a phenotype that is shared with a number of other Arabidopsis mutants disrupted in storage lipid breakdown. Germination frequency of the double mutant was significantly reduced compared with wild-type seeds. This was unaffected by the addition of exogenous sucrose, but was improved by dormancy-breaking treatments such as cold stratification and after-ripening. We show that the acx1-1, acx2-1 and acx1-2 acx2-1 double mutants and the ketoacyl-CoA thiolase-2 (kat2) mutant exhibit a sucrose-independent germination phenotype comparable with that reported for comatose (cts-2), a mutant in a peroxisomal ABC transporter which exhibits enhanced dormancy. This demonstrates an additional role beyond that of carbon provision for the β-oxidation pathway during germination or in dormant seeds

    Sucrose rescues seedling establishment but not germination of Arabidopsis mutants disrupted in peroxisomal fatty acid catabolism

    No full text
    The Arabidopsis acyl-CoA oxidase (ACX) family comprises isozymes with distinct fatty acid chain-length specificities that together catalyse the first step of peroxisomal fatty acid β-oxidation. We have isolated and characterized T-DNA insertion mutants in the medium to long-chain (ACX1) and long-chain (ACX2) acyl-CoA oxidases, and show that the corresponding endogenous activities are decreased in the mutants. Lipid catabolism during germination and early post-germinative growth was unaltered in the acx1-1 mutant, but slightly delayed in the acx2-1 mutant, with 3-day-old acx2-1 seedlings accumulating long-chain acyl-CoAs. In acx1-1 and acx2-1, seedling growth and establishment in the absence of an exogenous supply of sucrose was unaffected. Seedlings of the double mutant acx1-1 acx2-1 were unable to catabolize seed storage lipid, and accumulated long-chain acyl-CoAs. The acx1-1 acx2-1 seedlings were also unable to establish photosynthetic competency in the absence of an exogenous carbon supply, a phenotype that is shared with a number of other Arabidopsis mutants disrupted in storage lipid breakdown. Germination frequency of the double mutant was significantly reduced compared with wild-type seeds. This was unaffected by the addition of exogenous sucrose, but was improved by dormancy-breaking treatments such as cold stratification and after-ripening. We show that the acx1-1, acx2-1 and acx1-2 acx2-1 double mutants and the ketoacyl-CoA thiolase-2 (kat2) mutant exhibit a sucrose-independent germination phenotype comparable with that reported for comatose (cts-2), a mutant in a peroxisomal ABC transporter which exhibits enhanced dormancy. This demonstrates an additional role beyond that of carbon provision for the β-oxidation pathway during germination or in dormant seeds

    Regulation of peroxiredoxin expression versus expression of Halliwell-Asada-Cycle enzymes during early seedling development of Arabidopsis thaliana

    No full text
    Pena-Ahumada A, Kahmann U, Dietz K-J, Baier M. Regulation of peroxiredoxin expression versus expression of Halliwell-Asada-Cycle enzymes during early seedling development of Arabidopsis thaliana. PHOTOSYNTHESIS RESEARCH. 2006;89(2-3):99-112.During early seedling development of oil seed plants, the transition from lipid based heterotrophic to photoautotrophic carbohydrate metabolism is accompanied with a biphasic control of the chloroplast antioxidant system. In continuous light, organellar peroxiredoxins (Prx) and thylakoid-bound ascorbate peroxidase (tAPx) are activated early in seedling development, while stromal ascorbate peroxidase (sAPx), Cu/Zn-superoxide dismutase-2 (Csd2) and monodehydroascorbate reductase (MDHAR) and the cytosolic peroxiredoxins PrxIIB, PrxIIC and PrxIID are fully activated between 2.5 and 3 days after radicle emergence (DARE). Discontinuous light synchronized the expression of chloroplast antioxidant enzymes, but defined diurnally specific typeII-Prx-patterns in the cytosol and initiated chloroplast senescence around 2.5 DARE. Carbohydrate feeding uncoupled sAPx expression from the light pattern. In contrast, sucrose-feeding did not significantly impact on Prx transcript amounts. It is concluded that upon post-germination growth Prxs are activated endogenously to provide early antioxidant protection, which is supported by the Halliwell-Asada-Cycle, whose expressional activation depends on metabolic signals provided only later in development or in day-night-cycles

    Plant peroxisomal ABC transporters: flexible and unusual

    No full text
    ABC transporters of subfamily D mediate import of substrates for β-oxidation into peroxisomes. Whilst mammals possess three peroxisomal ABCD proteins which homodimerise to form transporters with distinct substrate specificities, Baker’s yeast has a single transporter formed by heterodimerisation, which imports long-chain fatty acyl CoAs. Plants have a single-fused heterodimer transporter that exhibits broad substrate specificity, reflecting the wide range of β-oxidation substrates processed by plants. The fusion appears to have occurred early in the evolution of land plants and was followed by an early duplication event in the monocot lineage. Plant ABCD proteins function in all stages of the life cycle and their physiological roles reflect the ability to transport diverse substrates including saturated and unsaturated fatty acids and aromatic compounds such as precursors of hormones and secondary metabolites. Recent work suggests that transport of CoA substrates involves their cleavage and re-esterification within the peroxisome, thus interaction with appropriate acyl adenylate-activating enzymes potentially provides a mechanism for regulating entry of different substrates into β-oxidation. The mechanism of ABCD transporter targeting is broadly conserved across kingdoms but evidence suggests the regulation of protein turnover differs

    Molecular and Hormonal Regulation of Thermoinhibition of Seed Germination

    No full text
    corecore