1,261 research outputs found

    Experimental Analysis of Algorithms for Coflow Scheduling

    Full text link
    Modern data centers face new scheduling challenges in optimizing job-level performance objectives, where a significant challenge is the scheduling of highly parallel data flows with a common performance goal (e.g., the shuffle operations in MapReduce applications). Chowdhury and Stoica introduced the coflow abstraction to capture these parallel communication patterns, and Chowdhury et al. proposed effective heuristics to schedule coflows efficiently. In our previous paper, we considered the strongly NP-hard problem of minimizing the total weighted completion time of coflows with release dates, and developed the first polynomial-time scheduling algorithms with O(1)-approximation ratios. In this paper, we carry out a comprehensive experimental analysis on a Facebook trace and extensive simulated instances to evaluate the practical performance of several algorithms for coflow scheduling, including the approximation algorithms developed in our previous paper. Our experiments suggest that simple algorithms provide effective approximations of the optimal, and that the performance of our approximation algorithms is relatively robust, near optimal, and always among the best compared with the other algorithms, in both the offline and online settings.Comment: 29 pages, 8 figures, 11 table

    Comparison of monoclonal antibodies 17-1A and 323/A3: the influence of the affinity on tumour uptake and efficacy of radioimmunotherapy in human ovarian cancer xenografts.

    Get PDF
    The low-affinity monoclonal antibody (MAb) chimeric 17-1A(c-17-1A) and the high-affinity MAb mouse 323/A3 (m-323/A3) were used to study the effect of the MAb affinity on the tumour uptake and efficacy of radioimmunotherapy in nude mice bearing subcutaneously the human ovarian cancer xenografts FMa, OVCAR-3 and Ov.Pe. Both MAbs are directed against the same pancarcinoma glycoprotein. In vitro, the number of binding sites on tumour cells at 4 degrees C was similar for both MAbs, but m-323/A3 had an approximately 5-fold higher affinity (1.3-3.0x10(9) M-1) than c-17-1A (3.0-5.4x10(8) M-1). This difference in affinity was more extreme at 37 degrees C, when no binding of c-17-1A could be observed. MAb m-323/A3 completely blocked binding of c-17-1A to tumour cells, whereas the reverse was not observed. Immunohistochemistry showed a similar but more intense staining pattern of m-323/A3 in human ovarian cancer xenografts than of c-17-1A. In vivo, the blood clearance in non-tumour-bearing nude mice was similar for both MAbs with terminal half-lives of 71.4 h for m-323/A3 and 62.7 h for c-17-1A. MAb m-323/A3 targeted better to tumour tissue, but was more heterogeneously distributed than c-17-1A. The cumulative absorbed radiation dose delivered by m-323/A3 to tumour tissue was 2.5- to 4.7-fold higher than that delivered by c-17-1A. When mice were treated with equivalent radiation doses of 131(I)m-323/A3 and 131(I)c-17-1A, based on a correction for the immunoreactivity of the radiolabelled MAbs, m-323/A3 induced a better growth inhibition in two of the three xenografts. When the radiation doses were adjusted to obtain a similar amount of radiation in the tumour c-17-1A was more effective in tumour growth inhibition in all three xenografts

    In vitro and in vivo studies on the combination of Brequinar sodium (DUP-785; NSC 368390) with 5-fluorouracil; effects of uridine.

    Get PDF
    Brequinar sodium (DUP-785; Brequinar) is a potent inhibitor of the pyrimidine de novo enzyme dihydroorotate dehydrogenase (DHO-DH), leading to a depletion of pyrimidine nucleotides, which could be reversed by uridine. In in vitro studies we investigated the effect of different physiological concentrations of uridine on the growth-inhibition by Brequinar, the effect of the nucleoside transport inhibitor, dipyridamole, and the combination of Brequinar and 5-fluorouracil (5FU). Uridine at 1 microM slightly reversed the growth inhibition by Brequinar, while the effect of 5-500 microM was greater. However, at Brequinar concentrations greater than 30 microM, uridine could not reverse the growth-inhibitory effects. Addition of dipyridamole could only partially prevent the reversing effects of uridine. The combination of Brequinar and 5FU was more than additive in the absence of uridine in the culture medium, but not in the presence of uridine. The combination of Brequinar and 5FU was tested in vivo in two murine colon tumour models, Colon 26 and Colon 38. Scheduling of both compounds appeared to be very important. In Colon 38 no potentiating effect of Brequinar could be observed. In contrast in Colon 26 a more than additive effect could be observed. Since uridine concentrations are considerably different in these tumours (higher in Colon 38), it was concluded from both the in vitro and in vivo experiments that uridine is an important determinant in combinations of Brequinar and 5FU

    Cyclosporin A and verapamil have different effects on energy metabolism in multidrug-resistant tumour cells.

    Get PDF
    Cyclosporin A (Sandimmune) rapidly induced an increase in daunorubicin accumulation in multidrug-resistant human ovarian carcinoma cells (2780AD) and was more potent than verapamil. Steady-state 3H-cyclosporin A accumulation at 37 degrees C in 2780AD cells was 60-70% of that in the sensitive A2780 cells. A rapid increase of ATP consumption and lactate production was induced in 2780AD cells by verapamil, but not by cyclosporin A. These results suggest that the interactions of cyclosporin A and verapamil with P-glycoprotein, which leads to inhibition of drug transport, have a different mechanistic basis

    Effects of Inelastic Neutrino-Nucleus Scattering on Supernova Dynamics and Radiated Neutrino Spectra

    Full text link
    Based on the shell model for Gamow-Teller and the Random Phase Approximation for forbidden transitions, we have calculated reaction rates for inelastic neutrino-nucleus scattering (INNS) under supernova (SN) conditions, assuming a matter composition given by Nuclear Statistical Equilibrium. The rates have been incorporated into state-of-the-art stellar core-collapse simulations with detailed energy-dependent neutrino transport. While no significant effect on the SN dynamics is observed, INNS increases the neutrino opacities noticeably and strongly reduces the high-energy tail of the neutrino spectrum emitted in the neutrino burst at shock breakout. Relatedly the expected event rates for the observation of such neutrinos by earthbound detectors are reduced by up to about 60%.Comment: 4 pages, 2 figures, 1 tabl
    corecore