1,379 research outputs found

    Nuevas tendencias en la automatización con autómatas programables basados en la Norma IEC-61131-3

    Full text link
    Dada las necesidades actuales en las automatizaciones industriales mediante los autómatas programables, que necesitan además del propio control, de comunicarse con multitud de equipos, tanto de control como de información, así como con programas informáticos de ayuda a los controles de producción, de mantenimiento y de la calidad de los productos, las formas clásicas de programación se han quedado obsoletas. A principio de los años 1990, se redactó una norma que ha propiciado unas nuevas tendencias de diseño de maniobras de automatización. Atendiendo a estas tendencias, y dada la experiencia del autor (que ha participado en dos proyecto europeos en este sentido) y las inquietudes de los alumnos de este tipo de tecnologías, se redacta un artículo que detalle escuetamente esta tendencias. Se ponen varios ejemplos prácticos para que el lector pueda adquirir unos conocimietos claros sobre la evolución de estas tecnologías.Pineda Sánchez, M. (2013). Nuevas tendencias en la automatización con autómatas programables basados en la Norma IEC-61131-3. http://hdl.handle.net/10251/3122

    Técnicas en el control y regulación del alumbrado

    Full text link
    En el ahorro energético, una de las variables más utilizadas es el control y ajuste de la iluminación. Además, a la hora de crear ambientes determinados desde el punto de vista de la decoración, este parámetro es también muy tenido en cuenta. Aunque la sensibilidad es sobradamente conocida es interesante saber (aunque de forma elemental) como se regula el alumbrado. En este trabajo se describe de forma básica los métodos más usuales en el control de la iluminación, se alecciona al lector en las técnicas empleadas hoy en día, y aunque no se entre en un análisis detallado por la extensión del artículo, al menos se dejan bastante claro la forma de actuar en estas tecnologías.Pineda Sánchez, M. (2013). Técnicas en el control y regulación del alumbrado. http://hdl.handle.net/10251/3122

    Surface Protection of Quaternary Gold Alloys by Thiol Self-Assembled Monolayers

    Get PDF
    This work deals with a physical and chemical surface characterization of quaternary 18K, 14K, and 9K gold alloys and pure polycrystalline gold substrates. Surface microstructure and composition are evaluated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray fluorescence spectroscopy. Corrosion resistance of 18K gold alloys is explored by potentiodynamic polarization showing the influence of the manufacturing process on materials fabricated as plates and wires. The research is also in the framework of one of the most common strategies on the modification of metallic surface properties, i.e., the building of self-assembled monolayers (SAM) from organic thiols. The metal affinity of the head group to produce the coating of the substrate by covalent binding is approached by using thiol compounds with different molecular structures and functional group chemistries exposed to an electrolyte solution. Therefore, a comparative study on the surface protection of a quaternary 18K gold alloy and pure gold substrates by SAMs of 6-mercaptopurine (6MP), 1-decanethiol (DT), and 11-mercaptoundecanoic acid (MUA) has been carried out. Surface modification and SAM organization are followed by cyclic voltammetry (CV), and the behavior of the double layer of the electrode–electrolyte interface is evaluated by electrochemical impedance spectroscopy (EIS). The study of these materials allows us to extract fundamental knowledge for its potential application in improving the bioactive properties of different jewelry pieces based on 18K gold alloys

    Paraphrase Plagiarism Identifcation with Character-level Features

    Full text link
    [EN] Several methods have been proposed for determining plagiarism between pairs of sentences, passages or even full documents. However, the majority of these methods fail to reliably detect paraphrase plagiarism due to the high complexity of the task, even for human beings. Paraphrase plagiarism identi cation consists in automatically recognizing document fragments that contain re-used text, which is intentionally hidden by means of some rewording practices such as semantic equivalences, discursive changes, and morphological or lexical substitutions. Our main hypothesis establishes that the original author's writing style ngerprint prevails in the plagiarized text even when paraphrases occur. Thus, in this paper we propose a novel text representation scheme that gathers both content and style characteristics of texts, represented by means of character-level features. As an additional contribution, we describe the methodology followed for the construction of an appropriate corpus for the task of paraphrase plagiarism identi cation, which represents a new valuable resource to the NLP community for future research work in this field.This work is the result of the collaboration in the framework of the CONACYT Thematic Networks program (RedTTL Language Technologies Network) and the WIQ-EI IRSES project (Grant No. 269180) within the FP7 Marie Curie action. The first author was supported by CONACYT (Scholarship 258345/224483). The second, third, and sixth authors were partially supported by CONACyT (Project Grants 258588 and 2410). The work of the fourth author was partially supported by the SomEMBED TIN2015-71147-C2-1-P MINECO research project and by the Generalitat Valenciana under the Grant ALMAMATER (PrometeoII/2014/030).Sánchez-Vega, F.; Villatoro-Tello, E.; Montes-Y-Gómez, M.; Rosso, P.; Stamatatos, E.; Villaseñor-Pineda, L. (2019). Paraphrase Plagiarism Identifcation with Character-level Features. Pattern Analysis and Applications. 22(2):669-681. https://doi.org/10.1007/s10044-017-0674-zS66968122

    Induction machine model with space harmonics for the diagnosis of rotor eccentricity, based on the convolution theorem

    Full text link
    [EN] Condition based maintenance (CBM) systems of induction machines (IMs) require fast and accurate models that can reproduce the fault related harmonics generated by different kinds of faults. Such models are needed to develop new diagnostic algorithms for detecting the faults at an early stage, to analyse the physical interactions between simultaneous faults of different types, or to train expert systems that can supervise and identify these faults in an autonomous way. To achieve these goals, these models must take into account the space harmonics of the air gap magnetomotive force (MMF) generated by the machine windings under fault conditions, due to the complex interactions between spatial and time harmonics in a faulty machine. One of the most common faults in induction machines is the rotor eccentricity, which can cause significant radial forces and, in extreme cases, produce destructive rotor-stator rub. However, the development of a fast, analytical model of the eccentric IM is a challenging task, due to the non-uniformity of the air gap. In this paper, a new method is proposed to obtain such a fast model. This method, which is theoretically justified, first enables a fast calculation of the self and mutual inductances of the stator and rotor phases for every rotor position, taking into account the non-uniform air-gap length and the actual position of all the stator and rotor conductors. Once these inductances are calculated, they are used in a coupled circuits analytical model of the IM, which in this way is able to calculate the time evolution of the electrical and mechanical quantities that characterize the machine functioning, under any type of eccentricity. Specifically, the model is able to reproduce accurately the characteristic eccentricity fault related harmonics in the spectrum of the stator current. The proposed approach is validated through two different methods. First, using a finite elements (FEM) model, in order to validate the correctness of the proposed method for calculating self and mutual inductances, taking into account the non-uniform air-gap. Finally, through an experimental test-bed using a commercial induction motor with a forced mixed eccentricity fault, in order to validate that the full model correctly reproduces the phase currents in such a way that their spectra accurately show the harmonics related with the eccentricity fault, which are the basis of many MCSA diagnostic approaches.This work was supported by the Spanish "Ministerio de Ciencia, Innovacion y Universidades (MCIU)", the "Agenda Estatal de Investigacion (AEI)" and the "Fondo Europeo de Desarrollo Regional (FEDER)" in the framework of the "Proyectos I + D + i - Retos Investigacion 2018", project reference RTI2018-102175-13400 (MCIU/AEI/FEDER, UE).Sapena-Bano, A.; Martinez-Roman, J.; Puche-Panadero, R.; Pineda Sánchez, M.; Pérez-Cruz, J.; Riera-Guasp, M. (2020). Induction machine model with space harmonics for the diagnosis of rotor eccentricity, based on the convolution theorem. International Journal of Electrical Power & Energy Systems. 117:1-19. https://doi.org/10.1016/j.ijepes.2019.105625S119117Liu, Y., & Bazzi, A. M. (2017). A review and comparison of fault detection and diagnosis methods for squirrel-cage induction motors: State of the art. ISA Transactions, 70, 400-409. doi:10.1016/j.isatra.2017.06.001Balasubramanian, A., & Muthu, R. (2017). Model Based Fault Detection and Diagnosis of Doubly Fed Induction Generators – A Review. Energy Procedia, 117, 935-942. doi:10.1016/j.egypro.2017.05.213Bellini, A., Filippetti, F., Tassoni, C., & Capolino, G.-A. (2008). Advances in Diagnostic Techniques for Induction Machines. IEEE Transactions on Industrial Electronics, 55(12), 4109-4126. doi:10.1109/tie.2008.2007527Culbert, I., & Letal, J. (2017). Signature Analysis for Online Motor Diagnostics: Early Detection of Rotating Machine Problems Prior to Failure. IEEE Industry Applications Magazine, 23(4), 76-81. doi:10.1109/mias.2016.2600684Manohar, M., Koley, E., & Ghosh, S. (2019). Enhancing resilience of PV-fed microgrid by improved relaying and differentiating between inverter faults and distribution line faults. International Journal of Electrical Power & Energy Systems, 108, 271-279. doi:10.1016/j.ijepes.2019.01.015Xia, X., Zhou, J., Li, C., & Zhu, W. (2015). A novel method for fault diagnosis of hydro generator based on NOFRFs. International Journal of Electrical Power & Energy Systems, 71, 60-67. doi:10.1016/j.ijepes.2015.02.022Zhao, B., Yang, M., Diao, H. R., An, B., Zhao, Y. C., & Zhang, Y. M. (2019). A novel approach to transformer fault diagnosis using IDM and naive credal classifier. International Journal of Electrical Power & Energy Systems, 105, 846-855. doi:10.1016/j.ijepes.2018.09.029Zhang, Y., Zhang, Y., Wen, F., Chung, C. Y., Tseng, C.-L., Zhang, X., … Yuan, Y. (2016). A fuzzy Petri net based approach for fault diagnosis in power systems considering temporal constraints. International Journal of Electrical Power & Energy Systems, 78, 215-224. doi:10.1016/j.ijepes.2015.11.095Farshad, M. (2019). Detection and classification of internal faults in bipolar HVDC transmission lines based on K-means data description method. International Journal of Electrical Power & Energy Systems, 104, 615-625. doi:10.1016/j.ijepes.2018.07.044Yahia, K., Sahraoui, M., Cardoso, A. J. M., & Ghoggal, A. (2016). The Use of a Modified Prony’s Method to Detect the Airgap-Eccentricity Occurrence in Induction Motors. IEEE Transactions on Industry Applications, 52(5), 3869-3877. doi:10.1109/tia.2016.2582146El Bouchikhi, E. H., Choqueuse, V., & Benbouzid, M. (2015). Induction machine faults detection using stator current parametric spectral estimation. Mechanical Systems and Signal Processing, 52-53, 447-464. doi:10.1016/j.ymssp.2014.06.015Morales-Perez, C., Rangel-Magdaleno, J., Peregrina-Barreto, H., Amezquita-Sanchez, J. P., & Valtierra-Rodriguez, M. (2018). Incipient Broken Rotor Bar Detection in Induction Motors Using Vibration Signals and the Orthogonal Matching Pursuit Algorithm. IEEE Transactions on Instrumentation and Measurement, 67(9), 2058-2068. doi:10.1109/tim.2018.2813820Faiz, J., & Ojaghi, M. (2009). Instantaneous-Power Harmonics as Indexes for Mixed Eccentricity Fault in Mains-Fed and Open/Closed-Loop Drive-Connected Squirrel-Cage Induction Motors. IEEE Transactions on Industrial Electronics, 56(11), 4718-4726. doi:10.1109/tie.2009.2030816Oumaamar, M. E. K., Maouche, Y., Boucherma, M., & Khezzar, A. (2017). Static air-gap eccentricity fault diagnosis using rotor slot harmonics in line neutral voltage of three-phase squirrel cage induction motor. Mechanical Systems and Signal Processing, 84, 584-597. doi:10.1016/j.ymssp.2016.07.016Resendiz-Ochoa, E., Osornio-Rios, R. A., Benitez-Rangel, J. P., De J. Romero-Troncoso, R., & Morales-Hernandez, L. A. (2018). Induction Motor Failure Analysis: An Automatic Methodology Based on Infrared Imaging. IEEE Access, 6, 76993-77003. doi:10.1109/access.2018.2883988Mirzaeva, G., & Saad, K. I. (2018). Advanced Diagnosis of Stator Turn-to-Turn Faults and Static Eccentricity in Induction Motors Based on Internal Flux Measurement. IEEE Transactions on Industry Applications, 54(4), 3961-3970. doi:10.1109/tia.2018.2821098Sangeetha B., P., & S., H. (2019). Rational-Dilation Wavelet Transform Based Torque Estimation from Acoustic Signals for Fault Diagnosis in a Three-Phase Induction Motor. IEEE Transactions on Industrial Informatics, 15(6), 3492-3501. doi:10.1109/tii.2018.2874463Naha, A., Samanta, A. K., Routray, A., & Deb, A. K. (2017). Low Complexity Motor Current Signature Analysis Using Sub-Nyquist Strategy With Reduced Data Length. IEEE Transactions on Instrumentation and Measurement, 66(12), 3249-3259. doi:10.1109/tim.2017.2737879Kaikaa, M. Y., Hadjami, M., & Khezzar, A. (2014). Effects of the simultaneous presence of static eccentricity and broken rotor bars on the stator current of induction machine. IEEE Transactions on Industrial Electronics, 61(5), 2452-2463. doi:10.1109/tie.2013.2270216Singh, G., & Naikan, V. N. A. (2018). Detection of half broken rotor bar fault in VFD driven induction motor drive using motor square current MUSIC analysis. Mechanical Systems and Signal Processing, 110, 333-348. doi:10.1016/j.ymssp.2018.03.001Singh, A., Grant, B., DeFour, R., Sharma, C., & Bahadoorsingh, S. (2016). A review of induction motor fault modeling. Electric Power Systems Research, 133, 191-197. doi:10.1016/j.epsr.2015.12.017Gangsar, P., & Tiwari, R. (2019). A support vector machine based fault diagnostics of Induction motors for practical situation of multi-sensor limited data case. Measurement, 135, 694-711. doi:10.1016/j.measurement.2018.12.011Ojaghi, M., Aghmasheh, R., & Sabouri, M. (2016). Model‐based exact technique to identify type and degree of eccentricity faults in induction motors. IET Electric Power Applications, 10(8), 706-713. doi:10.1049/iet-epa.2016.0026Salah, A. A., Dorrell, D. G., & Guo, Y. (2019). A Review of the Monitoring and Damping Unbalanced Magnetic Pull in Induction Machines Due to Rotor Eccentricity. IEEE Transactions on Industry Applications, 55(3), 2569-2580. doi:10.1109/tia.2019.2892359Faiz, J., & Moosavi, S. M. M. (2017). Detection of mixed eccentricity fault in doubly‐fed induction generator based on reactive power spectrum. IET Electric Power Applications, 11(6), 1076-1084. doi:10.1049/iet-epa.2016.0449Naderi, P., & Fallahi, F. (2016). Eccentricity fault diagnosis in three-phase-wound-rotor induction machine using numerical discrete modeling method. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 29(5), 982-997. doi:10.1002/jnm.2157Faiz, J., & Moosavi, S. M. M. (2016). Eccentricity fault detection – From induction machines to DFIG—A review. Renewable and Sustainable Energy Reviews, 55, 169-179. doi:10.1016/j.rser.2015.10.113Silwal, B., Rasilo, P., Perkkio, L., Hannukainen, A., Eirola, T., & Arkkio, A. (2016). Numerical Analysis of the Power Balance of an Electrical Machine With Rotor Eccentricity. IEEE Transactions on Magnetics, 52(3), 1-4. doi:10.1109/tmag.2015.2477847Yao, Y., Li, Y., & Yin, Q. (2019). A novel method based on self-sensing motor drive system for misalignment detection. Mechanical Systems and Signal Processing, 116, 217-229. doi:10.1016/j.ymssp.2018.06.030Dorrell, D. G. (2011). Sources and Characteristics of Unbalanced Magnetic Pull in Three-Phase Cage Induction Motors With Axial-Varying Rotor Eccentricity. IEEE Transactions on Industry Applications, 47(1), 12-24. doi:10.1109/tia.2010.2090845Xu, X., Han, Q., & Chu, F. (2018). A general electromagnetic excitation model for electrical machines considering the magnetic saturation and rub impact. Journal of Sound and Vibration, 416, 154-171. doi:10.1016/j.jsv.2017.11.050Faiz, J., Ebrahimi, B. M., & Sharifian, M. B. B. (2007). Finite Element Transient Analysis of an On-Load Three-Phase Squirrel-Cage Induction Motor with Static Eccentricity. Electromagnetics, 27(4), 207-227. doi:10.1080/02726340701272154BeBortoli, M. J., Salon, S. J., Burow, D. W., & Slavik, C. J. (1993). Effects of rotor eccentricity and parallel windings on induction machine behavior: a study using finite element analysis. IEEE Transactions on Magnetics, 29(2), 1676-1682. doi:10.1109/20.250728Faiz, J., Ebrahimi, B. M., Akin, B., & Toliyat, H. A. (2009). Comprehensive Eccentricity Fault Diagnosis in Induction Motors Using Finite Element Method. IEEE Transactions on Magnetics, 45(3), 1764-1767. doi:10.1109/tmag.2009.2012812Martinez, J., Belahcen, A., Detoni, J., & Arkkio, A. (2013). A 2D FEM analysis of electromechanical signatures in induction motors under dynamic eccentricity. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 27(3), 555-571. doi:10.1002/jnm.1942Thiele, M., & Heins, G. (2016). Computationally Efficient Method for Identifying Manufacturing Induced Rotor and Stator Misalignment in Permanent Magnet Brushless Machines. IEEE Transactions on Industry Applications, 52(4), 3033-3040. doi:10.1109/tia.2016.2552145Ajily, E., Ardebili, M., & Abbaszadeh, K. (2016). Magnet Defect and Rotor Eccentricity Modeling in Axial-Flux Permanent-Magnet Machines via 3-D Field Reconstruction Method. IEEE Transactions on Energy Conversion, 31(2), 486-495. doi:10.1109/tec.2015.2506819Mahmoud, H., & Bianchi, N. (2015). Eccentricity in Synchronous Reluctance Motors—Part I: Analytical and Finite-Element Models. IEEE Transactions on Energy Conversion, 30(2), 745-753. doi:10.1109/tec.2014.2384535Faiz, J., Ghasemi-Bijan, M., & Mahdi Ebrahimi, B. (2015). Modeling and Diagnosing Eccentricity Fault Using Three-dimensional Magnetic Equivalent Circuit Model of Three-phase Squirrel-cage Induction Motor. Electric Power Components and Systems, 43(11), 1246-1256. doi:10.1080/15325008.2015.1029651Garg, H., & Dahiya, R. (2016). Current signature analysis and its application in the condition monitoring of wind turbine for rotor faults. Energy Systems, 8(3), 495-510. doi:10.1007/s12667-016-0208-6Bao, X., Cheng, Z., & Di, C. (2017). Current analysis of large submersible motor under curved eccentricity by multi-loop method. International Journal of Applied Electromagnetics and Mechanics, 53(1), 63-76. doi:10.3233/jae-160005Rajalakshmi Samaga, B. L., & Vittal, K. P. (2012). Comprehensive study of mixed eccentricity fault diagnosis in induction motors using signature analysis. International Journal of Electrical Power & Energy Systems, 35(1), 180-185. doi:10.1016/j.ijepes.2011.10.011Ghoggal, A., Zouzou, S. E., Razik, H., Sahraoui, M., & Khezzar, A. (2009). An improved model of induction motors for diagnosis purposes – Slot skewing effect and air–gap eccentricity faults. Energy Conversion and Management, 50(5), 1336-1347. doi:10.1016/j.enconman.2009.01.003Faiz, J., & Ojaghi, M. (2009). Unified winding function approach for dynamic simulation of different kinds of eccentricity faults in cage induction machines. IET Electric Power Applications, 3(5), 461. doi:10.1049/iet-epa.2008.0206Toliyat, H. A., Lipo, T. A., & White, J. C. (1991). Analysis of a concentrated winding induction machine for adjustable speed drive applications. I. Motor analysis. IEEE Transactions on Energy Conversion, 6(4), 679-683. doi:10.1109/60.103641Ghoggal A, Zouzou SE, Razik H, Sahraoui M, Hadri-Hamida A. Application of the convolution theorem for the modeling of saturated induction motors. In: IECON 2010–36th Annu Conf IEEE Ind Electron Soc, IEEE; 2010. p. 772–7.Ghoggal, A., Sahraoui, M., Zouzou, S. E., & Razik, H. (2013). A Fast Inductance Computation Devoted to the Modeling of Healthy, Eccentric, and Saturated Induction Motors. Electric Power Components and Systems, 41(10), 1002-1022. doi:10.1080/15325008.2013.801056Sapena-Bano, A., Martinez-Roman, J., Puche-Panadero, R., Pineda-Sanchez, M., Perez-Cruz, J., & Riera-Guasp, M. (2018). Induction machine model with space harmonics for fault diagnosis based on the convolution theorem. International Journal of Electrical Power & Energy Systems, 100, 463-481. doi:10.1016/j.ijepes.2018.03.001Horen, Y., Strajnikov, P., & Kuperman, A. (2015). Simple mechanical parameters identification of induction machine using voltage sensor only. Energy Conversion and Management, 92, 60-66. doi:10.1016/j.enconman.2014.12.041Pineda-Sanchez, M., Puche-Panadero, R., Martinez-Roman, J., Sapena-Bano, A., Riera-Guasp, M., & Perez-Cruz, J. (2018). Partial Inductance Model of Induction Machines for Fault Diagnosis. Sensors, 18(7), 2340. doi:10.3390/s18072340Ikeda, M., & Hiyama, T. (2007). Simulation Studies of the Transients of Squirrel-Cage Induction Motors. IEEE Transactions on Energy Conversion, 22(2), 233-239. doi:10.1109/tec.2006.874203Staszak, J. (2013). Determination of slot leakage inductance for three-phase induction motor winding using an analytical method. Archives of Electrical Engineering, 62(4), 569-591. doi:10.2478/aee-2013-0046Joksimovic, G. M., Durovic, M. D., Penman, J., & Arthur, N. (2000). Dynamic simulation of dynamic eccentricity in induction machines-winding function approach. IEEE Transactions on Energy Conversion, 15(2), 143-148. doi:10.1109/60.866991Nandi, S., Bharadwaj, R. M., & Toliyat, H. A. (2002). Performance analysis of a three-phase induction motor under mixed eccentricity condition. IEEE Transactions on Energy Conversion, 17(3), 392-399. doi:10.1109/tec.2002.801995Faiz, J., & Tabatabaei, I. (2002). Extension of winding function theory for nonuniform air gap in electric machinery. IEEE Transactions on Magnetics, 38(6), 3654-3657. doi:10.1109/tmag.2002.804805Bossio, G., DeAngelo, C., Solsona, J., Garcia, G., & Valla, M. I. (2004). A 2-D Model of the Induction Machine: An Extension of the Modified Winding Function Approach. IEEE Transactions on Energy Conversion, 19(1), 144-150. doi:10.1109/tec.2003.822294Faiz, J., Ardekanei, I. T., & Toliyat, H. A. (2003). An evaluation of inductances of a squirrel-cage induction motor under mixed eccentric conditions. IEEE Transactions on Energy Conversion, 18(2), 252-258. doi:10.1109/tec.2003.811740Li, X., Wu, Q., & Nandi, S. (2007). Performance Analysis of a Three-Phase Induction Machine With Inclined Static Eccentricity. IEEE Transactions on Industry Applications, 43(2), 531-541. doi:10.1109/tia.2006.889806Meeker D. Finite element method magnetics. User’s Manual. Version 4.0; 2004
    corecore