1,666 research outputs found

    Spokes cluster: The search for the quiescent gas

    Full text link
    Context. Understanding the role of fragmentation is one of the most important current questions of star formation. To better understand the process of star and cluster formation, we need to study in detail the physical structure and properties of the parental molecular cloud. The Spokes cluster, or NGC 2264 D, is a rich protostellar cluster where previous N2H+(1-0) observations of its dense cores presented linewidths consistent with supersonic turbulence. However, the fragmentation of the most massive of these cores appears to have a scale length consistent with that of the thermal Jeans length, suggesting that turbulence was not dominant. Aims. These two results probe different density regimes. Our aim is to determine if there is subsonic or less-turbulent gas (than previously reported) in the Spokes cluster at higher densities. Methods. We present APEX N2H+(3-2) and N2D+(3-2) observations of the NGC2264-D region to measure the linewidths and the deuteration fraction of the higher density gas. The critical densities of the selected transitions are more than an order of magnitude higher than that of N2H+(1-0). Results. We find that the N2H+(3-2) and N2D+(3-2) emission present significantly narrower linewidths than the emission from N2H+(1-0) for most cores. In two of the spectra, the nonthermal component is close (within 1-sigma) to the sound speed. In addition, we find that the three spatially segregated cores, for which no protostar had been confirmed show the highest levels of deuteration. Conclusions. These results show that the higher density gas, probed with N2H+ and N2D+(3-2), reveals more quiescent gas in the Spokes cluster than previously reported. More high-angular resolution interferometric observations using high-density tracers are needed to truly assess the kinematics and substructure within NGC2264-D. (Abridged)Comment: 8 pages, 4 figures. Accepted in A&

    The "True" Column Density Distribution in Star-Forming Molecular Clouds

    Get PDF
    We use the COMPLETE Survey's observations of the Perseus star-forming region to assess and intercompare three methods for measuring column density in molecular clouds: extinction mapping (NIR); thermal emission mapping (FIR); and mapping the intensity of CO isotopologues. The structures shown by all three tracers are morphologically similar, but important differences exist. Dust-based measures give similar, log-normal, distributions for the full Perseus region, once careful calibration corrections are made. We also compare dust- and gas-based column density distributions for physically-meaningful sub-regions of Perseus, and we find significant variations in the distributions for those regions. Even though we have used 12CO data to estimate excitation temperatures, and we have corrected for opacity, the 13CO maps seem unable to give column distributions that consistently resemble those from dust measures. We have edited out the effects of the shell around the B-star HD 278942. In that shell's interior and in the parts where it overlaps the molecular cloud, there appears to be a dearth of 13CO, likely due either to 13CO not yet having had time to form in this young structure, and/or destruction of 13CO in the molecular cloud. We conclude that the use of either dust or gas measures of column density without extreme attention to calibration and artifacts is more perilous than even experts might normally admit. And, the use of 13CO to trace total column density in detail, even after proper calibration, is unavoidably limited in utility due to threshold, depletion, and opacity effects. If one's main aim is to map column density, then dust extinction seems the best probe. Linear fits amongst column density tracers are given, quantifying the inherent uncertainties in using one tracer (when compared with others). [abridged]Comment: Accepted in ApJ. 13 pages, 6 color figures. It includes small changes to improve clarity. For a version with high-resolution figures see http://www.cfa.harvard.edu/COMPLETE/papers/Goodman_ColumnDensity.pd

    The COMPLETE Survey of Outflows in Perseus

    Get PDF
    We present a study on the impact of molecular outflows in the Perseus molecular cloud complex using the COMPLETE survey large-scale 12CO(1-0) and 13CO(1-0) maps. We used three-dimensional isosurface models generated in RA-DEC-Velocity space to visualize the maps. This rendering of the molecular line data allowed for a rapid and efficient way to search for molecular outflows over a large (~ 16 sq. deg.) area. Our outflow-searching technique detected previously known molecular outflows as well as new candidate outflows. Most of these new outflow-related high-velocity features lie in regions that have been poorly studied before. These new outflow candidates more than double the amount of outflow mass, momentum, and kinetic energy in the Perseus cloud complex. Our results indicate that outflows have significant impact on the environment immediately surrounding localized regions of active star formation, but lack the energy needed to feed the observed turbulence in the entire Perseus complex. This implies that other energy sources, in addition to protostellar outflows, are responsible for turbulence on a global cloud scale in Perseus. We studied the impact of outflows in six regions with active star formation within Perseus of sizes in the range of 1 to 4 pc. We find that outflows have enough power to maintain the turbulence in these regions and enough momentum to disperse and unbind some mass from them. We found no correlation between outflow strength and star formation efficiency for the six different regions we studied, contrary to results of recent numerical simulations. The low fraction of gas that potentially could be ejected due to outflows suggests that additional mechanisms other than cloud dispersal by outflows are needed to explain low star formation efficiencies in clusters.Comment: Published in The Astrophysical Journa

    CO Isotopologues in the Perseus Molecular Cloud Complex: the X-Factor and Regional Variations

    Full text link
    We use the COMPLETE data to derive new calibrations of the X-factor and the 13CO abundance within Perseus. We divide Perseus into six sub-regions. The standard X factor, X=N(H2)/W(12CO), is derived both for the whole Perseus Complex and for each of the six sub-regions with values consistent with previous estimates. The X factor is heavily affected by the saturation of the emission above AV~4 mag, and variations are found between regions. We derive linear fits to relate W(12CO) and AV using only points below 4 mag of extinction, this yields a better estimation of the AV than the X-factor. We derive linear relations of W(13CO), N(13CO) and W(C18O) with AV . The extinction threshold above which 13CO(1-0) and C18O(1-0) are detected is about 1 mag larger than previous estimates. 12CO(1-0) and 13CO(1-0) lines saturate above 4 and 5 mag, respectively, whereas C18O(1-0) never saturates (up to 10 mag). Approximately 60% of the positions with 12CO emission have sub-thermally excited lines, and almost all positions have 12CO excitation temperatures below the dust temperature. Using the Meudon PDR code we find that 12CO and 13CO emission can be explained by uniform slab models with densities ranging between about 10^3 and 10^4 cm-3. Local variations in the volume density and non-thermal motions (linked to different star formation activity) can explain the observations. Higher densities are needed to reproduce CO data toward active star forming sites, where the larger internal motions driven by the young protostars allow more photons from the embedded high density cores to escape the cloud. In the most quiescent region, the 12CO and 13CO emission appears to arise from an almost uniform thin layer of molecular material at densities around 10^4 cm-3.Comment: 40 pages, 12 figures, accepted for publication in ApJ; version with high resolution figures available at http://www.cfa.harvard.edu/~jpineda/post/cal-co-v2.pd

    From Filamentary Networks to Dense Cores in Molecular Clouds: Toward a New Paradigm for Star Formation

    Full text link
    Recent studies of the nearest star-forming clouds of the Galaxy at submillimeter wavelengths with the Herschel Space Observatory have provided us with unprecedented images of the initial and boundary conditions of the star formation process. The Herschel results emphasize the role of interstellar filaments in the star formation process and connect remarkably well with nearly a decade's worth of numerical simulations and theory that have consistently shown that the ISM should be highly filamentary on all scales and star formation is intimately related to self-gravitating filaments. In this review, we trace how the apparent complexity of cloud structure and star formation is governed by relatively simple universal processes - from filamentary clumps to galactic scales. We emphasize two crucial and complementary aspects: (i) the key observational results obtained with Herschel over the past three years, along with relevant new results obtained from the ground on the kinematics of interstellar structures, and (ii) the key existing theoretical models and the many numerical simulations of interstellar cloud structure and star formation. We then synthesize a comprehensive physical picture that arises from the confrontation of these observations and simulations.Comment: 24 pages, 15 figures. Accepted for publication as a review chapter in Protostars and Planets VI, University of Arizona Press (2014), eds. H. Beuther, R. Klessen, C. Dullemond, Th. Hennin

    Nitrogen fractionation in ammonia and its insights on nitrogen chemistry

    Full text link
    Context. Observations of 14N/15N\rm ^{14}N/^{15}N in the interstellar medium are becoming more frequent thanks to the increased telescope capabilities. However, interpreting these data is still puzzling. In particular, measurements of 14N/15N\rm ^{14}N/^{15}N in diazenylium revealed high levels of anti-fractionation in cold cores. Aims. Furuya & Aikawa (2018), using astrophysical simulations coupled with a gas-grain chemical code, concluded that the 15^{15}N-depletion in prestellar cores could be inherited from the initial stages, when 14N15N\rm ^{14}N^{15}N is selectively photodissociated and 15N atoms deplete onto the dust grain, forming ammonia ices. We aim to test this hypothesis. Methods. We targeted three sources (the prestellar core L1544, the protostellar envelope IRAS4A, and the shocked region L1157-B1) with distinct degrees of desorption or sputtering of the ammonia ices. We observed the NH3 isotopologues with the GBT, and we inferred the 14N/15N\rm ^{14}N/^{15}N via a spectral fitting of the observed inversion transitions. Results. 15^{15}NH3(1,1) is detected in L1544 and IRAS4A, whilst only upper limits are deduced in L1157-B1. The NH3 isotopic ratio is significantly lower towards the protostar than at the centre of L1544, where it is consistent with the elemental value. We also present the first spatially resolved map of NH3 nitrogen isotopic ratio towards L1544. Conclusions. Our results are in agreement with the hypothesis that ammonia ices are enriched in 15^{15}N, leading to a decrease of the 14N/15N\rm ^{14}N/^{15}N ratio when the ices are sublimated into the gas phase for instance due to the temperature rise in protostellar envelopes. The ammonia 14N/15N\rm ^{14}N/^{15}N value at the centre of L1544 is a factor of 2 lower than that of N2H+, suggesting that the dominant formation pathway is hydrogenation of N atoms on dust grains, followed by non-thermal desorption.Comment: Accepted for publication in A&A on 29/05/2

    Resolved images of the protoplanetary disk around HD 100546 with ALMA

    Full text link
    The disk around the Herbig Ae/Be star HD 100546 has been extensively studied and it is one of the systems for which there are observational indications of ongoing and/or recent planet formation. However, up until now no resolved image of the millimeter dust emission or the gas has been published. We present the first resolved images of the disk around HD 100546 obtained in Band 7 with the ALMA observatory. The CO (3-2) image reveals a gas disk that extends out to 350 au radius at the 3-sigma level. Surprisingly, the 870um dust continuum emission is compact (radius <60 au) and asymmetric. The dust emission is well matched by a truncated disk with outer radius of ≈\approx50 au. The lack of millimeter-sized particles outside the 60 au is consistent with radial drift of particles of this size. The protoplanet candidate, identified in previous high-contrast NACO/VLT L' observations, could be related to the sharp outer edge of the millimeter-sized particles. Future higher angular resolution ALMA observations are needed to determine the detailed properties of the millimeter emission and the gas kinematics in the inner region (<2arcsec). Such observations could also reveal the presence of a planet through the detection of circumplanetary disk material.Comment: 6 pages, 4 figures. Accepted in ApJ
    • …
    corecore