2,409 research outputs found

    Infrared spectra of van de Waals complexes of importance in planetary atmospheres

    Get PDF
    It has been suggested that (CO2)2 and Ar-CO2 are important constituents of the planetary atmospheres of Venus and Mars. Recent results on the laboratory spectroscopy of CO2 containing van der Waals complexes which may be of use in the modeling of the spectra of planetary atmospheres are presented. Sub-Doppler infrared spectra were obtained for (CO2)2, (CO2)3, and rare-gas-CO2 complexes in the vicinity of the CO2 Fermi diad at 2.7 micrometers using a color-center-laser optothermal spectrometer. From the spectroscopic constants the geometries of the complexes have been determined and van der Waals vibrational frequencies have been estimated. The equilibrium configurations are C2h, C3h, and C2v, for (CO2)2, (CO2)3, and the rare-gas-CO2 complexes, respectively. Most of the homogeneous linewidths for the revibrational transitions range from 0.5 to 22 MHz, indicating that predissociation is as much as four orders of magnitude faster than radiative processes for vibrational relaxation in these complexes

    Multispeckle diffusing-wave spectroscopy: a tool to study slow relaxation and time-dependent dynamics

    Full text link
    A multispeckle technique for efficiently measuring correctly ensemble-averaged intensity autocorrelation functions of scattered light from non-ergodic and/or non-stationary systems is described. The method employs a CCD camera as a multispeckle light detector and a computer-based correlator, and permits the simultaneous calculation of up to 500 correlation functions, where each correlation function is started at a different time. The correlation functions are calculated in real time and are referenced to a unique starting time. The multispeckle nature of the CCD camera detector means that a true ensemble average is calculated; no time averaging is necessary. The technique thus provides a "snapshot" of the dynamics, making it particularly useful for non-stationary systems where the dynamics are changing with time. Delay times spanning the range from 1 ms to 1000 s are readily achieved with this method. The technique is demonstrated in the multiple scattering limit where diffusing-wave spectroscopy theory applies. The technique can also be combined with a recently-developed two-cell technique that can measure faster decay times. The combined technique can measure delay times from 10 ns to 1000 s. The method is peculiarly well suited for studying aging processes in soft glassy materials, which exhibit both short and long relaxation times, non-ergodic dynamics, and slowly-evolving transient behavior.Comment: 11 pages 13 figures Accepted in Review of Scientific Instrument (june 02

    Green function Retrieval and Time-reversal in a Disordered World

    Full text link
    We apply the theory of multiple wave scattering to two contemporary, related topics: imaging with diffuse correlations and stability of time-reversal of diffuse waves, using equipartition, coherent backscattering and frequency speckles as fundamental concepts.Comment: 1 figur

    Zero sound in a single component fermion - Bose Einstein Condensate mixture

    Full text link
    The resonant dynamics of mediated interactions supports zero-sound in a cold atom degenerate mixture of a single component fermion gas and a Bose-Einstein condensate (BEC). We characterize the onset of instability in the phase separation of an unstable mixture and we find a rich collective mode structure for stable mixtures with one undamped mode that exhibits an avoided crossing and a Landau-damped mode that terminates.Comment: 4 pages, 2 figure

    Diffusing-wave spectroscopy of nonergodic media

    Full text link
    We introduce an elegant method which allows the application of diffusing-wave spectroscopy (DWS) to nonergodic, solid-like samples. The method is based on the idea that light transmitted through a sandwich of two turbid cells can be considered ergodic even though only the second cell is ergodic. If absorption and/or leakage of light take place at the interface between the cells, we establish a so-called "multiplication rule", which relates the intensity autocorrelation function of light transmitted through the double-cell sandwich to the autocorrelation functions of individual cells by a simple multiplication. To test the proposed method, we perform a series of DWS experiments using colloidal gels as model nonergodic media. Our experimental data are consistent with the theoretical predictions, allowing quantitative characterization of nonergodic media and demonstrating the validity of the proposed technique.Comment: RevTeX, 12 pages, 6 figures. Accepted for publication in Phys. Rev.

    Solar Neutrinos. II. Experimental

    Full text link
    • …
    corecore