56 research outputs found
Effect of cross exercise on quadriceps acceleration reaction time and subjective scores (Lysholm questionnaire) following anterior cruciate ligament reconstruction
Abstract Background Anterior cruciate ligament (ACL) injury or reconstruction can cause knee impairments and disability. Knee impairments are related to quadriceps performance – accelerated reaction time (ART) – and disability to performance of daily living activities which is assessed by questionnaires such as the Lysholm knee score. The purposes of this study were to investigate the effect of cross exercise, as supplementary rehabilitation to the early phase of ACL reconstruction: a) on quadriceps ART at the angles 45°, 60° and 90° of knee flexion and, b) on the subjective scores of disability in ACL reconstructed patients. Methods 42 patients who underwent ACL reconstruction were randomly divided into 3 groups, two experimental and one control. All groups followed the same rehabilitation program. The experimental groups followed 8 weeks of cross eccentric exercise (CEE) on the uninjured knee; 3 d/w, and 5 d/w respectively. Quadriceps ART was measured at 45°, 60° and 90° of knee flexion pre and nine weeks post-operatively using an isokinetic dynamometer. Patients also completed pre and post operatively the Lysholm questionnaire whereby subjective scores were recorded. Results Two factor ANOVA showed significant differences in ART at 90° among the groups (F = 4.29, p = 0.02, p Significant differences were also found in the Lysholm score among the groups (F = 4.75, p = 0.01, p Conclusion CEE showed improvements on quadriceps ART at 90° at a sequence of 3 d/w and in the Lysholm score at a sequence of 3 d/w and 5 d/w respectively on ACL reconstructed patients.</p
Test-retest reliability of knee kinesthesia in healthy adults
<p>Abstract</p> <p>Background</p> <p>Sensory information from mechanoreceptors in the skin, muscles, tendons, and joint structures plays an important role in joint stability. A joint injury can lead to disruption of the sensory system, which can be measured by proprioceptive acuity. When evaluating proprioception, assessment tools need to be reliable. The aim of this study was to assess the test-retest reliability of a device designed to measure knee proprioception.</p> <p>Methods</p> <p>Twenty-four uninjured individuals (14 women and 10 men) were examined with regard to test-retest reliability of knee kinesthesia, measured by the threshold to detection of passive motion (TDPM). Measurements were performed towards extension and flexion from the two starting positions, 20 degrees and 40 degrees knee joint flexion, giving four variables. The mean difference between test and retest together with the 95% confidence interval (test 2 minus test 1), the intraclass correlation coefficient (ICC<sub>2,1</sub>), and Bland and Altman graphs with limits of agreement, were used as statistical methods for assessing test-retest reliability.</p> <p>Results</p> <p>The intraclass correlation coefficients ranged from 0.59 to 0.70 in all variables except one. No difference was found between test and retest in three of the four TDPM variables. TDPM would need to decrease between 10% and 38%, and increase between 17% and 24% in groups of uninjured subjects to be 95% confident of detecting a real change. The limits of agreement were rather wide in all variables. The variables associated with the 20-degree starting position tended to have higher intraclass correlation coefficients and narrower limits of agreement than those associated with 40 degrees.</p> <p>Conclusion</p> <p>Three TDPM variables were considered reliable for observing change in groups of subjects without pathology. However, the limits of agreement revealed that small changes in an individual's performance cannot be detected. The higher intraclass correlation coefficients and the narrower limits of agreement in the variables associated with the starting position of 20 degrees knee joint flexion, indicate that these variables are more reliable than those associated with 40 degrees. We, therefore, recommend that the TDPM be measured with a 20-degree starting position.</p
A randomised controlled trial investigating motor skill training as a function of attentional focus in old age
BACKGROUND: Motor learning research has had little impact on clinical applications and rarely extended to research about how older adults learn motor skills. There is consistent evidence that motor skill performance and learning can be enhanced by giving learners instructions that direct their attention. The aim of this study was to test whether elderly individuals that receive an external focus instruction during training of dynamic balance skills would learn in a different manner compared to individuals that received an internal focus instruction. METHODS: This randomised trial included 26 older persons (81 +/- 6 years) that were training functional balance twice a week for the duration of 5 weeks. Learning outcomes were recorded after every training session. Weight shifting score and dynamic balance parameters (Biodex Balance System), components of the Extended Timed-Get-Up-and-Go test, five chair rises, and falls efficacy (FES-I) was assessed at baseline and post-intervention. RESULTS: Participation for training sessions was 94%. No differences between groups were found following 5 weeks of training for weight shifting score, dynamic balance index and dynamic balance time (p < 0.95, p = 0.16, p < 0.50), implying no learning differences between training groups. Extended Timed-Get-Up-and-Go components Sit-to-stand, p = .036; Gait initiation, p = .039; Slow down, stop, turnaround, and sit down, p = 0.011 and the Fes-I (p = 0.014) showed improvements for the total group, indicating that function improved compared to baseline. CONCLUSION: A 5-week balance training improved weight shifting scores and dynamic balance parameters as well as functional abilities. The observed improvements were independent from the type of attentional focus instructions. The findings provide support for the proposition of different motor learning principles in older adults compared to younger adults
Proprioception deficiency in articular cartilage lesions of the knee
Purpose: The purpose of this study is to investigate the proprioceptive function of patients with isolated articular cartilage lesions of the knee as compared to normal controls. Methods: The Cartilage group consisted of eight subjects with radiologically and arthroscopically confirmed, isolated, unilateral, articular cartilage lesions of the knee (Outerbridge grade III or IV). They were compared to 50 normal controls. Knee proprioception was assessed by dynamic postural stabilometry using the Biodex Balance SD System. Patient-reported outcome measures (PROMs) were used to evaluate all subjects. Results: Proprioception of the injured knee of the Cartilage group was significantly poorer compared to that of the control group (p < 0.001). A significant proprioceptive deficit also was observed when the uninjured knees of the Cartilage group were compared to those in the Control group (p = 0.003). There was no significant proprioceptive difference between the injured and the contra-lateral uninjured knee of the Cartilage group (p = 0.116). A significant correlation was found between the proprioception measurements of the injured and uninjured knee of the Cartilage group (r = 0.76, p = 0.030). A significant difference was observed in all PROMs (p < 0.001) between the Cartilage and Control groups. Conclusions: Patients with isolated articular cartilage lesions of the knee had a significant proprioceptive deficit as compared to normal controls. The deficiency was profound and even affected the proprioceptive function of the contra-lateral uninjured knee. This study has shown that articular cartilage lesions have a major influence on knee proprioception. However, it remains uncertain as to whether a proprioceptive deficit leads to osteoarthritis or is a consequence of it
Conventionally assessed voluntary activation does not represent relative voluntary torque production
The ability to voluntarily activate a muscle is commonly assessed by some variant of the twitch interpolation technique (ITT), which assumes that the stimulated force increment decreases linearly as voluntary force increases. In the present study, subjects (n = 7) with exceptional ability for maximal voluntary activation (VA) of the knee extensors were used to study the relationship between superimposed and voluntary torque. This includes very high contraction intensities (90–100%VA), which are difficult to consistently obtain in regular healthy subjects (VA of ∼90%). Subjects were tested at 30, 60, and 90° knee angles on two experimental days. At each angle, isometric knee extensions were performed with supramaximal superimposed nerve stimulation (triplet: three pulses at 300 Hz). Surface EMG signals were obtained from rectus femoris, vastus lateralis, and medialis muscles. Maximal VA was similar and very high across knee angles: 97 ± 2.3% (mean ± SD). At high contraction intensities, the increase in voluntary torque was far greater than would be expected based on the decrement of superimposed torque. When voluntary torque increased from 79.6 ± 6.1 to 100%MVC, superimposed torque decreased from 8.5 ± 2.6 to 2.8 ± 2.3% of resting triplet. Therefore, an increase in VA of 5.7% (from 91.5 ± 2.6 to 97 ± 2.3%) coincided with a much larger increase in voluntary torque (20.4 ± 6.1%MVC) and EMG (33.9 ± 6.6%max). Moreover, a conventionally assessed VA of 91.5 ± 2.6% represented a voluntary torque of only 79.6 ± 6.1%MVC. In conclusion, when maximal VA is calculated to be ∼90% (as in regular healthy subjects), this probably represents a considerable overestimation of the subjects’ ability to maximally drive their quadriceps muscles
Assessment of the paraspinal muscles of subjects presenting an idiopathic scoliosis: an EMG pilot study
BACKGROUND: It is known that the back muscles of scoliotic subjects present abnormalities in their fiber type composition. Some researchers have hypothesized that abnormal fiber composition can lead to paraspinal muscle dysfunction such as poor neuromuscular efficiency and muscle fatigue. EMG parameters were used to evaluate these impairments. The purpose of the present study was to examine the clinical potential of different EMG parameters such as amplitude (RMS) and median frequency (MF) of the power spectrum in order to assess the back muscles of patients presenting idiopathic scoliosis in terms of their neuromuscular efficiency and their muscular fatigue. METHODS: L5/S1 moments during isometric efforts in extension were measured in six subjects with idiopathic scoliosis and ten healthy controls. The subjects performed three 7 s ramp contractions ranging from 0 to 100% maximum voluntary contraction (MVC) and one 30 s sustained contraction at 75% MVC. Surface EMG activity was recorded bilaterally from the paraspinal muscles at L5, L3, L1 and T10. The slope of the EMG RMS/force (neuromuscular efficiency) and MF/force (muscle composition) relationships were computed during the ramp contractions while the slope of the EMG RMS/time and MF/time relationships (muscle fatigue) were computed during the sustained contraction. Comparisons were performed between the two groups and between the left and right sides for the EMG parameters. RESULTS: No significant group or side differences between the slopes of the different measures used were found at the level of the apex (around T10) of the major curve of the spine. However, a significant side difference was seen at a lower level (L3, p = 0.01) for the MF/time parameter. CONCLUSION: The EMG parameters used in this study could not discriminate between the back muscles of scoliotic subjects and those of control subject regarding fiber type composition, neuromuscular efficiency and muscle fatigue at the level of the apex. The results of this pilot study indicate that compensatory strategies are potentially seen at lower level of the spine with these EMG parameters
Strength and hypertrophy responses to constant and decreasing rest intervals in trained men using creatine supplementation
<p>Abstract</p> <p>Background</p> <p>The purpose of the current study was to compare strength and hypertrophy responses to resistance training programs that instituted constant rest intervals (CI) and decreasing rest intervals (DI) between sets over the course of eight weeks by trained men who supplemented with creatine monohydrate (CR).</p> <p>Methods</p> <p>Twenty-two recreationally trained men were randomly assigned to a CI group (n = 11; 22.3 ± 1 years; 77.7 ± 5.4 kg; 180 ± 2.2 cm) or a DI group (n = 11; 22 ± 2.5 years; 75.8 ± 4.9 kg; 178.8 ± 3.4 cm). Subjects in both groups supplemented with CR; the only difference between groups was the rest interval instituted between sets; the CI group used 2 minutes rest intervals between sets and exercises for the entire 8-weeks of training, while the DI group started with a 2 minute rest interval the first two weeks; after which the rest interval between sets was decreased 15 seconds per week (i.e. 2 minutes decreasing to 30 seconds between sets). Pre- and post-intervention maximal strength for the free weight back squat and bench press exercises and isokinetic peak torque were assessed for the knee extensors and flexors. Additionally, muscle cross-sectional area (CSA) of the right thigh and upper arm was measured using magnetic resonance imaging.</p> <p>Results</p> <p>Both groups demonstrated significant increases in back squat and bench press maximal strength, knee extensor and flexor isokinetic peak torque, and upper arm and right thigh CSA from pre- to post-training (p ≤ 0.0001); however, there were no significant differences between groups for any of these variables. The total volume for the bench press and back squat were significantly greater for CI group versus the DI group.</p> <p>Conclusions</p> <p>We report that the combination of CR supplementation and resistance training can increase muscular strength, isokinetic peak torque, and muscle CSA, irrespective of the rest interval length between sets. Because the volume of training was greater for the CI group versus the DI group, yet strength gains were similar, the creatine supplementation appeared to bolster adaptations for the DI group, even in the presence of significantly less volume. However, further research is needed with the inclusion of a control group not receiving supplementation combined and resistance training with decreasing rest intervals to further elucidate such hypotheses.</p
- …