17 research outputs found

    Lyapunov-type Inequalities for Partial Differential Equations

    Full text link
    In this work we present a Lyapunov inequality for linear and quasilinear elliptic differential operators in NN-dimensional domains Ω\Omega. We also consider singular and degenerate elliptic problems with ApA_p coefficients involving the pp-Laplace operator with zero Dirichlet boundary condition. As an application of the inequalities obtained, we derive lower bounds for the first eigenvalue of the pp-Laplacian, and compare them with the usual ones in the literature

    Eigenvalues of the p-Laplacian and disconjugacy criteria

    Full text link
    We derive oscillation and nonoscillation criteria for the one-dimensional p-Laplacian in terms of an eigenvalue inequality for a mixed problem. We generalize the results obtained in the linear case by Nehari and Willett, and the proof is based on a Picone-type identity

    ESTIMATES FOR EIGENVALUES OF QUASILINEAR ELLIPTIC SYSTEMS. PART II

    Get PDF
    Abstract. In this paper we find explicit lower bounds for Dirichlet eigenvalues of a weighted quasilinear elliptic system of resonant type in terms of the eigenvalues of a single p-Laplace equation. Also we obtain asymptotic bounds by studying the spectral counting function which is defined as the number of eigenvalues smaller than a given value. 1

    Precise asymptotic of eigenvalues of resonant quasilinear systems

    Get PDF
    AbstractIn this work we study the sequence of variational eigenvalues of a system of resonant type involving p- and q-Laplacians on Ω⊂RN, with a coupling term depending on two parameters α and β satisfying α/p+β/q=1. We show that the order of growth of the kth eigenvalue depends on α+β, λk=O(kα+βN)

    Eigenvalues of the <inline-formula><graphic file="1029-242X-2006-37191-i1.gif"/></inline-formula>-Laplacian and disconjugacy criteria

    No full text
    We derive oscillation and nonoscillation criteria for the one-dimensional -Laplacian in terms of an eigenvalue inequality for a mixed problem. We generalize the results obtained in the linear case by Nehari and Willett, and the proof is based on a Picone-type identity.</p

    Envejecimiento celular - Fibonacci en el potrero - Álgebra de Boole

    No full text
    Editorial: Diferencias y semejanzas por Agustin Rela (pág 3)El estrés oxidativo por A. Strum, A. Juarez, M.C. Ríos de Molina (pág 5)Pan y Queso por Juan Carlos Pedraza (pág 12)Problemas matemáticos: Un arquero como la gente por Carlos Borches (pág 18)Historias: Aquello que no vemos por Juan P. Pinasco (pág 19)Lógica Booleana e informática por Andrea Rey (pág 20)Problemas e Historia: Los problemas del joven Rey Pastor (pág 25)Lógica matemática: P o no P, esa es la cuestión por Christian Espíndola (pág 26)Ciencia en la cultura popular: El Nim de Marienbad por Carlos Borches (pág 29)Intimidades de un cierre: ...o no se puede caminar para atrás con las ojotas puestas (pág 32
    corecore