17 research outputs found
Lyapunov-type Inequalities for Partial Differential Equations
In this work we present a Lyapunov inequality for linear and quasilinear
elliptic differential operators in dimensional domains . We also
consider singular and degenerate elliptic problems with coefficients
involving the Laplace operator with zero Dirichlet boundary condition.
As an application of the inequalities obtained, we derive lower bounds for
the first eigenvalue of the Laplacian, and compare them with the usual ones
in the literature
Eigenvalues of the p-Laplacian and disconjugacy criteria
We derive oscillation and nonoscillation criteria for the one-dimensional p-Laplacian in terms of an eigenvalue inequality for a mixed problem. We generalize the results obtained in the linear case by Nehari and Willett, and the proof is based on a Picone-type identity
ESTIMATES FOR EIGENVALUES OF QUASILINEAR ELLIPTIC SYSTEMS. PART II
Abstract. In this paper we find explicit lower bounds for Dirichlet eigenvalues of a weighted quasilinear elliptic system of resonant type in terms of the eigenvalues of a single p-Laplace equation. Also we obtain asymptotic bounds by studying the spectral counting function which is defined as the number of eigenvalues smaller than a given value. 1
Precise asymptotic of eigenvalues of resonant quasilinear systems
AbstractIn this work we study the sequence of variational eigenvalues of a system of resonant type involving p- and q-Laplacians on Ω⊂RN, with a coupling term depending on two parameters α and β satisfying α/p+β/q=1. We show that the order of growth of the kth eigenvalue depends on α+β, λk=O(kα+βN)
Eigenvalues of the <inline-formula><graphic file="1029-242X-2006-37191-i1.gif"/></inline-formula>-Laplacian and disconjugacy criteria
We derive oscillation and nonoscillation criteria for the one-dimensional -Laplacian in terms of an eigenvalue inequality for a mixed problem. We generalize the results obtained in the linear case by Nehari and Willett, and the proof is based on a Picone-type identity.</p
Envejecimiento celular - Fibonacci en el potrero - Álgebra de Boole
Editorial: Diferencias y semejanzas por Agustin Rela (pág 3)El estrés oxidativo por A. Strum, A. Juarez, M.C. Ríos de Molina (pág 5)Pan y Queso por Juan Carlos Pedraza (pág 12)Problemas matemáticos: Un arquero como la gente por Carlos Borches (pág 18)Historias: Aquello que no vemos por Juan P. Pinasco (pág 19)Lógica Booleana e informática por Andrea Rey (pág 20)Problemas e Historia: Los problemas del joven Rey Pastor (pág 25)Lógica matemática: P o no P, esa es la cuestión por Christian Espíndola (pág 26)Ciencia en la cultura popular: El Nim de Marienbad por Carlos Borches (pág 29)Intimidades de un cierre: ...o no se puede caminar para atrás con las ojotas puestas (pág 32