18 research outputs found

    Computational Fluid Dynamic Analysis of a High-Pressure Spatial Chemical Vapor Deposition (HPS-CVD) Reactor for Flow Stability

    No full text
    High indium-content group-III nitrides are of interest to further expand upon our ability to produce highly efficient optical emitters at longer visible/IR wavelengths or to broaden bandgap engineering opportunities in the group-III nitride material system. Current synthesis approaches are limited in their capabilities, in part due to the low decomposition temperature of indium nitride. A new high-pressure spatial chemical vapor deposition (HPS-CVD) has been proposed which can operate at pressures up to 100 atmospheres, thereby significantly raising the growth temperature of indium nitride more than 100 kelvins and permitting the investigation of the impact of pressure on precursor stability and reactivity. This study systematically analyzes an HPS-CVD reactor design using computational fluid dynamic modeling in order to understand favorable operating conditions for growth of group III nitrides. Specifically, the relationship between inlet gas type (nitrogen, hydrogen, or ammonia), inlet gas velocity, gas flow rate, and rotational speed of the wafer carrier is evaluated for conditions under which a smooth and dominant vortex-free flow are obtained over the wafer. Heater power was varied to maintain a wafer temperature of 1250–1300 K. Favorable operating conditions were identified that were simultaneously met for all three gas types, providing a stable operating window for a wide range of gas chemistries for growth; at one atmosphere, a disk rotational speed of 50 rpm and a flow rate of 12 slm for all gas types is desired

    Infrared absorption of hydrogen-related defects in ammonothermal GaN

    No full text
    Polarization controlled Fourier transform infrared (FTIR) absorption measurements were performed on a high quality m-plane ammonothermal GaN crystal grown using basic chemistry. The polarization dependence of characteristic absorption peaks of hydrogen-related defects at 3000-3500 cm(-1) was used to identify and determine the bond orientation of hydrogenated defect complexes in the GaN lattice. Majority of hydrogen was found to be bonded in gallium vacancy complexes decorated with one to three hydrogen atoms (V-Ga-H-1,H-2,H-3) but also hydrogenated oxygen defect complexes, hydrogen in bond-center sites, and lattice direction independent absorption were observed. Absorption peak intensity was used to determine a total hydrogenated V-Ga density of approximately 4 x 10(18) cm(-3), with main contribution from V-Ga-H-1,H-2. Also, a significant concentration of electrically passive V-Ga-H-3 was detected. The high density of hydrogenated defects is expected to have a strong effect on the structural, optical, and electrical properties of ammonothermal GaN crystals. Published by AIP Publishing.Peer reviewe

    Free electron concentration dependent sub-bandgap optical absorption characterization of bulk GaN crystals

    No full text
    Optical transmission measurements were performed on high quality bulk gallium nitride (GaN) crystals grown by sodium flux, hydride vapor phase epitaxy, and the ammonothermal method with varying free electron concentrations ranging from 4Ă—1016 cm-3 to 9Ă—1018 cm-3. The quality of the crystals was analyzed by x-ray diffraction, threading dislocation density determination, impurity concentrations, and Hall mobility measurements. The sub-bandgap absorption coefficient and index of refraction was determined based on illumination wavelengths ranging from 360 nm to 800 nm. Phonon-assisted free carrier absorption was determined to be the dominant absorption mechanism above approximately 0.1 cm-1. The absorption coefficient at 450 nm varied linearly from 0.1 cm- 1 to 5 cm-1 for free electron concentrations ranging from 1Ă—1017 cm-3 to 9Ă—1018 cm-3. The ammonothermal GaN samples exhibited a strong defect related onset of absorption above 2.9 eV which can be explained by the presence of appreciable hydrogenated gallium vacancies having defect states close to the valance band within the electric bandgap of GaN. The presence of hydrogenated gallium vacancies was experimentally confirmed by Fourier transform infrared absorbance measurements and double hydrogenated gallium vacancy defect are speculated to be prominent in ammonothermal GaN.Peer reviewe

    Incorporation and effects of impurities in different growth zones within basic ammonothermal GaN

    No full text
    The ammonothermal method is one of the most promising candidates for large-scale bulk GaN growth due to its scalability and high crystalline quality. However, emphasis needs to be put on understanding the incorporation and effects of impurities during growth. This article discusses how impurities are incorporated in different growth zones in basic ammonothermal GaN, and how they affect the structural, electrical and optical properties of the grown crystal. The influence of growth time on the impurity incorporation is also studied. We measure the oxygen, silicon, and carbon impurity concentrations using secondary ion mass spectrometry, and measure their effect on the lattice constant by high resolution x-ray diffraction (HR-XRD). We determine the resulting free carrier concentration by spatially resolved Fourier transform infrared spectroscopy and study the optical properties by spatially resolved low-temperature photoluminescence. We find that oxygen is incorporated preferentially in different growth regions and its incorporation efficiency depends on the growth direction. The oxygen concentration varies from 6.3Ă—1020 cm-3 for growth on the 112-2 planes to 2.2Ă—1019 cm-3 for growth on the (0001) planes, while silicon and carbon concentration variation is negligible. This results in a large variation in impurity concentration over a small length scale, which causes significant differences in the strain within the boule, as determined by HR-XRD on selected areas. The impurity concentration variation induces large differences in the free carrier concentration, and directly affects the photoluminescence intensity.Peer reviewe

    A new system for sodium flux growth of bulk GaN

    No full text
    Though several methods exist to produce bulk crystals of gallium nitride (GaN), none have been commercialized on a large scale. The sodium flux method, which involves precipitation of GaN from a sodium-gallium melt supersaturated with nitrogen, offers potentially lower cost production due to relatively mild process conditions while maintaining high crystal quality. We successfully developed a novel apparatus for conducting crystal growth of bulk GaN using the sodium flux method which has advantages with respect to prior reports. A key task was to prevent sodium loss or migration from the growth environment while permitting N2 to access the growing crystal. We accomplished this by implementing a reflux condensing stem along with a reusable capsule containing a hermetic seal. The reflux condensing stem also enabled direct monitoring of the melt temperature, which has not been previously reported for the sodium flux method. Furthermore, we identified and utilized molybdenum and the molybdenum alloy TZM as a material capable of directly containing the corrosive sodium-gallium melt. This allowed implementation of a crucible-free system, which may improve process control and potentially lower crystal impurity levels. Nucleation and growth of parasitic GaN ("PolyGaN") on non-seed surfaces occurred in early designs. However, the addition of carbon in later designs suppressed PolyGaN formation and allowed growth of single crystal GaN. Growth rates for the (0001) Ga face (+c-plane) were up to 14μm/h while X-ray omega rocking (ω-XRC) curve full width half-max values were 731″ for crystals grown using a later system design. Oxygen levels were high, >1019 atoms/cm3, possibly due to reactor cleaning and handling procedures.Peer reviewe

    Sustainable Village (semester?), IPRO 301: Sustainable Village IPRO 301 Project Plan Sp05

    No full text
    The team working on this project has set itself three major objectives. Firstly it strives to create a comprehensive and in-depth database containing valuable information concerning sustainability. This database should be user-friendly and intuitively presented so people who are interested in sustainability are quickly educated with the key points and have easy access to relevant and high quality references and further readings. The second objective of this project essentially consists of creating a roadmap and master plan on how to make Illinois Institute of Technology’s (IIT) Main Campus sustainable. This will be done by auditing and then benchmarking IIT to other similar projects. This roadmap and master plan will be developed with the vision that once implemented IIT will be a leader in sustainability and encourage many others to follow our track. Lastly the third objective is to create a house of the future. The house of the future has many objectives for itself. It should incorporate current design possibilities and make use of various available technologies to be sustainable and energy efficient among other things. This house should attract the public and educate them how easily sustainability can be achieved using current technology and knowledge at a competitive price.Deliverables for IPRO 301: Sustainable Village for the spring 2005 semeste
    corecore