145 research outputs found

    Asas health index for patients with spondyloarthritis: translation into portuguese, validation, and reliability

    Get PDF
    Trabalho apresentado no Annual European Congress of Rheumatology (EULAR 2017), 14-17 junho de 2017, Madrid, EspanhaN/

    The δN formula is the dynamical renormalization group

    Get PDF
    We derive the 'separate universe' method for the inflationary bispectrum, beginning directly from a field-theory calculation. We work to tree-level in quantum effects but to all orders in the slow-roll expansion, with masses accommodated perturbatively. Our method provides a systematic basis to account for novel sources of time-dependence in inflationary correlation functions, and has immediate applications. First, we use our result to obtain the correct matching prescription between the 'quantum' and 'classical' parts of the separate universe computation. Second, we elaborate on the application of this method in situations where its validity is not clear. As a by-product of our calculation we give the leading slow-roll corrections to the three-point function of field fluctuations on spatially flat hypersurfaces in a canonical, multiple-field model.Comment: v1: 33 pages, plus appendix and references; 5 figures. v2: typographical typos fixed, minor changes to the main text and abstract, reference added; matches version published in JCA

    Global embeddings of scalar-tensor theories in (2+1)-dimensions

    Get PDF
    We obtain (3+3)- or (3+2)-dimensional global flat embeddings of four uncharged and charged scalar-tensor theories with the parameters B or L in the (2+1)-dimensions, which are the non-trivially modified versions of the Banados-Teitelboim-Zanelli (BTZ) black holes. The limiting cases B=0 or L=0 exactly are reduced to the Global Embedding Minkowski Space (GEMS) solution of the BTZ black holes.Comment: 19 pages, 2 figure

    Age-related shift in LTD is dependent on neuronal adenosine A(2A) receptors interplay with mGluR5 and NMDA receptors

    Get PDF
    Synaptic dysfunction plays a central role in Alzheimer's disease (AD), since it drives the cognitive decline. An association between a polymorphism of the adenosine A2A receptor (A2AR) encoding gene-ADORA2A, and hippocampal volume in AD patients was recently described. In this study, we explore the synaptic function of A2AR in age-related conditions. We report, for the first time, a significant overexpression of A2AR in hippocampal neurons of aged humans, which is aggravated in AD patients. A similar profile of A2AR overexpression in rats was sufficient to drive age-like memory impairments in young animals and to uncover a hippocampal LTD-to-LTP shift. This was accompanied by increased NMDA receptor gating, dependent on mGluR5 and linked to enhanced Ca(2+) influx. We confirmed the same plasticity shift in memory-impaired aged rats and APP/PS1 mice modeling AD, which was rescued upon A2AR blockade. This A2AR/mGluR5/NMDAR interaction might prove a suitable alternative for regulating aberrant mGluR5/NMDAR signaling in AD without disrupting their constitutive activity
    corecore