3,625 research outputs found

    Causal Propagators for Algebraic Gauges

    Get PDF
    Applying the principle of analytic extension for generalized functions we derive causal propagators for algebraic non-covariant gauges. The so generated manifestly causal gluon propagator in the light-cone gauge is used to evaluate two one-loop Feynman integrals which appear in the computation of the three-gluon vertex correction. The result is in agreement with that obtained through the usual prescriptions.Comment: LaTex, 09 pages, no figure

    Hamilton-Jacobi formalism for Linearized Gravity

    Get PDF
    In this work we study the theory of linearized gravity via the Hamilton-Jacobi formalism. We make a brief review of this theory and its Lagrangian description, as well as a review of the Hamilton-Jacobi approach for singular systems. Then we apply this formalism to analyze the constraint structure of the linearized gravity in instant and front-form dynamics.Comment: To be published in Classical and Quantum Gravit

    Quantum State Density and Critical Temperature in M-theory

    Full text link
    We discuss the asymptotic properties of quantum states density for fundamental pp-branes which can yield a microscopic interpretation of the thermodynamic quantities in M-theory. The matching of BPS part of spectrum for superstring and supermembrane gives the possibility of getting membrane's results via string calculations. In the weak coupling limit of M-theory the critical behavior coincides with the first order phase transition in standard string theory at temperature less than the Hagedorn's temperature THT_H. The critical temperature at large coupling constant is computed by considering M-theory on manifold with topology R9mathbbT2{\mathbb R}^9\otimes{mathbb T}^2. Alternatively we argue that any finite temperature can be introduced in the framework of membrane thermodynamics.Comment: 16 pages, published in Mod. Phys. Lett. A16(2001)224

    Bopp-Podolsky black holes and the no-hair theorem

    Full text link
    Bopp-Podolsky electrodynamics is generalized to curved space-times. The equations of motion are written for the case of static spherically symmetric black holes and their exterior solutions are analyzed using Bekenstein's method. It is shown the solutions split-up into two parts, namely a non-homogeneous (asymptotically massless) regime and a homogeneous (asymptotically massive) sector which is null outside the event horizon. In addition, in the simplest approach to Bopp-Podolsky black holes, the non-homogeneous solutions are found to be Maxwell's solutions leading to a Reissner-Nordstr\"om black hole. It is also demonstrated that the only exterior solution consistent with the weak and null energy conditions is the Maxwell's one. Thus, in light of energy conditions, it is concluded that only Maxwell modes propagate outside the horizon and, therefore, the no-hair theorem is satisfied in the case of Bopp-Podolsky fields in spherically symmetric space-times.Comment: 9 pages, updated to match published versio

    de Broglie-Proca and Bopp-Podolsky massive photon gases in cosmology

    Full text link
    We investigate the influence of massive photons on the evolution of the expanding universe. Two particular models for generalized electrodynamics are considered, namely de Broglie-Proca and Bopp-Podolsky electrodynamics. We obtain the equation of state (EOS) P=P(ε)P=P(\varepsilon) for each case using dispersion relations derived from both theories. The EOS are inputted into the Friedmann equations of a homogeneous and isotropic space-time to determine the cosmic scale factor a(t)a(t). It is shown that the photon non-null mass does not significantly alter the result at1/2a\propto t^{1/2} valid for a massless photon gas; this is true either in de Broglie-Proca's case (where the photon mass mm is extremely small) or in Bopp-Podolsky theory (for which mm is extremely large).Comment: 8 pages, 2 figures; v2 matches the published versio

    The canonical structure of Podolsky's generalized electrodynamics on the Null-Plane

    Get PDF
    In this work we will develop the canonical structure of Podolsky's generalized electrodynamics on the null-plane. This theory has second-order derivatives in the Lagrangian function and requires a closer study for the definition of the momenta and canonical Hamiltonian of the system. On the null-plane the field equations also demand a different analysis of the initial-boundary value problem and proper conditions must be chosen on the null-planes. We will show that the constraint structure, based on Dirac formalism, presents a set of second-class constraints, which are exclusive of the analysis on the null-plane, and an expected set of first-class constraints that are generators of a U(1) group of gauge transformations. An inspection on the field equations will lead us to the generalized radiation gauge on the null-plane, and Dirac Brackets will be introduced considering the problem of uniqueness of these brackets under the chosen initial-boundary condition of the theory
    corecore