681 research outputs found

    Derived varieties of complexes and Kostant’s theorem for gl(m|n)

    No full text

    Far-infrared and submillimeter-wave conductivity in electron-doped cuprate La_{2-x}Ce_xCuO_4

    Full text link
    We performed far-infrared and submillimeter-wave conductivity experiments in the electron-doped cuprate La_{2-x}Ce_xCuO_4 with x = 0.081 (underdoped regime, T_c = 25 K). The onset of the absorption in the superconducting state is gradual in frequency and is inconsistent with the isotropic s-wave gap. Instead, a narrow quasiparticle peak is observed at zero frequency and a second peak at finite frequencies, clear fingerprints of the conductivity in a d-wave superconductor. A far-infrared conductivity peak can be attributed to 4Delta_0, or to 2Delta_0 + Delta_spin, where Delta_spin is the resonance frequency of the spin-fluctuations. The infrared conductivity as well as the suppression of the quasiparticle scattering rate below T_c are qualitatively similar to the results in the hole-doped cuprates.Comment: 5 pages, 4 figures include

    On the peak in the far-infrared conductivity of strongly anisotropic cuprates

    Full text link
    We investigate the far-infrared and submillimeter-wave conductivity of electron-doped La_(2-x)Ce_xCuO_4 tilted 1 degree off from the ab-plane. The effective conductivity measured for this tilt angle reveals an intensive peak at finite frequency (\nu ~ 50 cm{-1}) due to a mixing of the in-plane and out-of-plane responses. The peak disappears for the pure in-plane response and transforms to the Drude-like contribution. Comparative analysis of the mixed and the in-plane contributions allows to extract the c-axis conductivity which shows a Josephson plasma resonance at 11.7 cm{-1} in the superconducting state.Comment: 4 pages, 4 figures include

    Spectral origin of the colossal magnetodielectric effect in multiferroic DyMn2O5

    Full text link
    The origin of the colossal magnetodielectric effect in DyMn2O5 [1] has been an outstanding question in multiferroics. Here, we report the activation of the electric dipole mode at 4-5 cm-1 in an applied magnetic field which fully accounts for the CMD effect. We examine two alternative explanations of this mode: an electromagnon and transitions between f-electron levels of Dy3+ ions. The experimental and theoretical evidence supports the electromagnon origin of the CMD effect.Comment: 5 pages, 4 figures, submitted to PR

    Delayed feedback control of self-mobile cavity solitons

    Get PDF
    Control of the motion of cavity solitons is one the central problems in nonlinear optical pattern formation. We report on the impact of the phase of the time-delayed optical feedback and carrier lifetime on the self-mobility of localized structures of light in broad area semiconductor cavities. We show both analytically and numerically that the feedback phase strongly affects the drift instability threshold as well as the velocity of cavity soliton motion above this threshold. In addition we demonstrate that non-instantaneous carrier response in the semiconductor medium is responsible for the increase in critical feedback rate corresponding to the drift instability
    corecore