9 research outputs found

    A blue light receptor that mediates RNA binding and translational regulation

    Get PDF
    Sensory photoreceptor proteins underpin light-dependent adaptations in nature and enable the optogenetic control of organismal behavior and physiology. We identified the bacterial light-oxygen-voltage (LOV) photoreceptor PAL that sequence-specifically binds short RNA stem loops with around 20 nM affinity in blue light and weaker than 1 µM in darkness. A crystal structure rationalizes the unusual receptor architecture of PAL with C-terminal LOV photosensor and N-terminal effector units. The light-activated PAL–RNA interaction can be harnessed to regulate gene expression at the RNA level as a function of light in both bacteria and mammalian cells. The present results elucidate a new signal-transduction paradigm in LOV receptors and conjoin RNA biology with optogenetic regulation, thereby paving the way toward hitherto inaccessible optoribogenetic modalities

    Parkin Is Protective against Proteotoxic Stress in a Transgenic Zebrafish Model

    Get PDF
    Mutations in the gene encoding the E3 ubiquitin ligase parkin (PARK2) are responsible for the majority of autosomal recessive parkinsonism. Similarly to other knockout mouse models of PD-associated genes, parkin knockout mice do not show a substantial neuropathological or behavioral phenotype, while loss of parkin in Drosophila melanogaster leads to a severe phenotype, including reduced lifespan, apoptotic flight muscle degeneration and male sterility. In order to study the function of parkin in more detail and to address possible differences in its role in different species, we chose Danio rerio as a different vertebrate model system.We first cloned zebrafish parkin to compare its biochemical and functional aspects with that of human parkin. By using an antisense knockdown strategy we generated a zebrafish model of parkin deficiency (knockdown efficiency between 50% and 60%) and found that the transient knockdown of parkin does not cause morphological or behavioral alterations. Specifically, we did not observe a loss of dopaminergic neurons in parkin-deficient zebrafish. In addition, we established transgenic zebrafish lines stably expressing parkin by using a Gal4/UAS-based bidirectional expression system. While parkin-deficient zebrafish are more vulnerable to proteotoxicity, increased parkin expression protected transgenic zebrafish from cell death induced by proteotoxic stress.Similarly to human parkin, zebrafish parkin is a stress-responsive protein which protects cells from stress-induced cell death. Our transgenic zebrafish model is a novel tool to characterize the protective capacity of parkin in vivo

    Parkin, PINK1 and mitochondrial integrity: emerging concepts of mitochondrial dysfunction in Parkinson’s disease

    No full text
    corecore