59 research outputs found

    Power Quality Event Classification in Distribution Grids Using Machine Learning

    Get PDF

    Optimisation Modelling for Offshore Wind Farms

    Get PDF

    Supporting LV Distribution Network Voltage Using PV Inverters Under High EV Penetration

    Get PDF

    Short-term performance variations of different photovoltaic system technologies under the humid subtropical climate of Kanpur in India

    Get PDF
    The study discusses the short-term performance variations of grid-connected photovoltaic (PV) systems installed in Kanpur, India. The analysis presents a holistic view of the performance variations of three PV array technologies [multi-crystalline (multi-Si), copper indium gallium diselenide and amorphous silicon] and two inverter types (high-frequency transformer and low-frequency transformer). The analysis considers the DC–AC conversion efficiency of the inverter, system performance through performance ratio (PR) calculations, energy variations between fixed and tracking systems and the comparison between calculated and simulated data for the examined period. The energy output difference between the tracking and fixed systems of the same PV technology show that these are dependent on differences in temperature coefficient, shading and other system related issues. The PR analysis shows the effect of temperature on the multi-Si system. The difference between the simulated and measured values of the systems was mostly attributed to the irradiance differences. Regarding the inverter evaluation, the results showed that both inverter types underperformed in terms of the conversion efficiency compared with nameplate values

    A combined model for PV system lifetime energy prediction and annual energy assessment

    Get PDF
    This paper presents a generic model for the prediction of the lifetime energy production of photovoltaic (PV) systems and the assessment of their annual energy yield in different time periods of operation. As case studies, it considers domestic PV system generation potentials in the UK and India to demonstrate the model results across a range of contrasting climatic and operating conditions. The model combines long-term averages of solar data, a commercial PV system simulation package and a probability density function to express the range of the annual energy prediction in different time periods of system operation. Moreover, a sensitivity analysis based on degradation rates and energy output uncertainties is embedded in the lifetime energy calculations. The importance of the reliability and maintenance of the PV systems and the energy prediction risks, especially regarding economic viability, are demonstrated through the PV lifetime energy potentials in these two countries. It is shown that, even for countries that are significantly different in respect to their solar resource, PV systems may produce similar amounts of energy during their lifetime for reasonable assumptions of degradation rates and uncertainty levels
    • …
    corecore