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Abstract— Load profiles are indispensable in the decision 

making process of power transmission and distribution 

companies. Increasing levels of customer-side renewable 

generation and electric transport will alter the nature of load 

profiles significantly. Traditional methods relying on historical 

data will not be suitable for modelling the increasingly complex 

power networks of the future. In this paper the feasibility of 

synthesising future load profiles under increasing levels of 

photovoltaic (PV) generation and electric vehicles (EV) is 

investigated using an artificial neural network (ANN) based 

method, trained with publically available data. The performance 

of the proposed method is evaluated by using a case study 

developed for a targeted region in the UK. A comparison of 

results from the ANN model against those using Multiple Linear 

Regression (MLR) demonstrates the superior performance of 

ANN over MLR as well as proves the viability of ANN to 

synthesise future load profiles. 
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I.  INTRODUCTION 

Load profiles are essential for power transmission and 
distribution companies in order to make important decisions on 
the volume of generation, power purchase agreements, 
operation and maintenance scheduling,  development of 
network infrastructure etc [1-2]. Traditionally load profiles are 
created using historical data [3], and are used in many countries 
to balance load demand [4]. In the near future, there will be a 
significant penetration of consumer-side generation using 
renewable technologies such as roof-top PV systems and 
electrical vehicle (EVs) in electricity distribution networks. 
This would cause massive changes to the nature of load 
profiles and hence it would not be possible to have true load 
profiles or close approximation based on historic load 
forecasting. This rising complexity of load profiles would be a 
major challenge for electrical power network operators. Hence 
it becomes important to develop suitable load profile 
generation methodologies that rely on publicly available data 
that aid different network related analyses by operators.  

The exact penetration levels of consumer-side technologies 
such as PVs and EVs in the future energy demand mix is 
presently uncertain. The charging profiles of different EV 
technologies is also evolving as EV technology is evolving. 
Hence it is important to have a scalable method that can 

generate future load profiles under different PV and EV 
penetration levels. As there is a step change in load the 
objective is not to generate future load profiles based on 
historic datasets of load, but to use standardised load profiles 
and load/generation-weather relationships. 

Previous literature reveals that a large proportion of the 
variability in electricity demand is dependent on weather 
variables such as air temperature, humidity, wind speed, cloud 
cover and irradiation [5-6]. It is also evident that the sensitivity 
of residential and commercial consumers electricity demand to 
meteorological variables is higher than that for industrial 
consumers [7]. Irradiance, air temperature, wind speed and air 
mass are weather features that affect PV power output [8]. Liu 
et al posit that there is no obvious correlation between wind 
speed and PV output power [9]. Aste et al find that 
performance ratio for crystalline silicon PV modules is fairly 
constant in the face of changes in air mass [10]. Seasonal 
variations in weather affect the PV output power from month to 
month. The existing literature seems to agree that irradiance 
and air temperature are the two most important weather 
features that impact on the output power of a PV system. The 
charging profiles of EVs have no obvious correlation to 
weather [11]. They are dictated by consumer driving behaviour 
which in turn is correlated to the socio-economic factors of the 
region. As temperature and irradiance are influencing 
parameters common to load and PV generation, it makes sense 
to include these as inputs for generating future aggregate load 
profiles.  

In this paper the feasibility of using publicly available 
weather and electrical vehicle charging data to generate future 
penetration level scenario based residential load profiles is 
investigated. An artificial neural network (ANN) based method 
is proposed to synthesize future residential load profiles based 
on photovoltaics (PV) and electrical vehicle (EV) penetration 
levels and weather data as the input. The main contribution of 
this paper is the development of a computational procedure for 
PV and EV penetration scenario-based future load profile 
generation based on public data. The procedure developed is 
tested for a case study in Middlesbrough, UK. 

The rest of the paper is organized as follows: Data inputs 
for this study, PV generation modelling and ANN based load 
profile generation methodology are described in Section II; 
Simulation results are presented and discussed in Section III 
and Conclusions are drawn in Section IV. 
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II. DATA AND METHODOLOGY 

A. Data Description 

The UK Energy Research Centre (UKERC) has developed 
load profile models for all 4 seasons of a typical year [12]. The 
load data used in this study is for residential customers 
unrestricted by usage timings. The load profiles from UKERC 
have hourly time-resolution and are publicly available. As 
described in the previous section, temperature and irradiation 
are the main weather data to be considered. There are a number 
of weather databases which provide weather data for a typical 
year for different locations such as NREL (National Renewable 
Energy Laboratory) National Solar Radiation Data base, NASA 
Surface meteorology and Solar Energy, PVGIS (Photovoltaic 
Geographical Information System) climate-SAF etc. PVGIS 
climate-SAF was selected as the reference solar database for 
the UK as it provides up-to-date data in the public domain for 
Europe. The data is available with hourly time resolution for 
365 days a year. A MATLAB program was written to create 
seasonal average hourly weather (temperature and global 
irradiation) datasets. The Low Carbon London (LCL) project 
conducted customer trials of new transport and heating loads 
on distribution networks in London. Residential EV charging 
profile data for this paper is taken from the project [13]. 

B. PV Generation 

 Middlesbrough, UK is considered as the region where 
future load profiles are to be generated. In the UK, PV systems 
of 4 kWp rating are eligible for the highest feed-in tariff 
incentive. Hence this system size was considered. The 
crystalline silicon PV technology was selected as it is the most 
mature PV technology with the highest market share. Typical 
PV systems were modelled using PVGIS 5 online software 
which generates PV output data with hourly time resolution for 
365 days a year. Seasonal average typical PV generation 
datasets were created using a MATLAB program similar to 
that described for weather data. Fig.1 shows the seasonal 
variation in PV generation. As expected summer and spring 
months have higher power outputs for longer duration as 
compared to autumn and winter. 

C. PV and EV Penetration Scenarios 

PV and EV penetration level in this work is defined as the 
ratio of the number of houses with a typical PV system or EV 
to the total number of houses in the distribution network for 
which the load profile is representative. In this work, PV 
penetration level was varied in steps of 10% from 0 to 100%, 
along with a similar variation in EV penetration level 
corresponding to PV penetration level. 

D. Creation of composite future load profiles 

Composite future load profiles are essential for testing the 
feasibility of the ANN based load profile generation 
methodology. After generating seasonal PV generation 
profiles, composite future load profiles, for the whole range of 
EV and PV penetration scenarios described in the previous 
section for all seasons of a typical year, were created. This was 
done by aggregating seasonal UKERC profile class 1 load 
profiles with penetration-level-weighed PV generation 

(negative demand) profiles and EV charging profiles from 
LCL. As future load profiles for the penetration scenarios 
described are not yet available these composite load profiles 
were construed as close substitutes to the actual. 

Fig. 1. Seasonal variation in PV output profiles of the typical PV system. 

E. Formulation of the prediction model 

Fig. 2 shows the block diagram of the computational 
procedure for formulation of the PV and EV penetration 
scenario-based future load profile prediction model.  

 
Fig. 2. Proposed ANN future load profile prediction model. 

As described in the introduction section load profiles and 
PV generation are correlated to temperature and irradiance. 
Future load profiles are required for different PV and EV 
penetration levels. The model developed should be able to 
predict future load profiles under different weather and PV/EV 
scenarios. For ease of reproduction and to aid use by electric 
network operators the data requirements of the method should 
be met from public domain data. ANN method was chosen for 
prediction because of its advantages such as its ability to 
identify and capture complex nonlinear relationships between 
dependent and independent variables, less formal statistical 
training requirement, ability to recognise all potential 
interactions between predictor variables and the availability of 
a range of different training algorithms as part of a MATLAB 
toolbox [14]. To visualise the complexity of the ANN training 
and prediction requirements, a similar prediction is attempted 
using Multiple Linear Regression (MLR). MLR is a prediction 
method that attempts to model the relationship between two or 



more input variables and a target output variable by fitting a 
linear equation between the input and output. 

F. ANN Design and Training 

ANNs are universal function approximators capable of 
mapping any nonlinear function. In terms of computational 
structure, ANNs are composed of neurons, which at a very 
basic level mimic neurons in the human body in terms of 
learning and processing information. In this work, a feed 
forward neural network is used. In this ANN design, neurons 
are arranged in successive layers and information flows from 
the input layer to the hidden layer and then to output layer. The 
method used for ANN training is supervised learning where the 
training data includes both the input and the target outputs. 
Levenberg-Marquardt algorithm is used for ANN training 
owing to its training speed and ease of implementation using 
MATLAB neural network toolbox. 

The input variables for the ANN model was time of day, global 
irradiation (W/m2), temperature (oC), PV penetration level (%) 
and EV penetration level (%). The output is load for the 
particular hour (kW). The ANN model was trained on input 
weather and target load data for spring, summer and winter for 
the range of penetration scenarios described in section II.C. As 
complexity increases the difficulty in training and the training 
time, it was aimed to keep the ANN structure as simple as 
possible. A single hidden layer was considered between the 
input and output layers. Initially the ANN was trained with 5 
input nodes corresponding to the 5 input variable, 10 hidden 
nodes (default MATLAB architecture) and 1 output node 
corresponding to the load. The use of the default ANN 
architecture gave a Pearson correlation coefficient (R) value 
close to 1, between predicted outputs and targets outputs of the 
ANN. The ANN was re-trained after reducing the number of 
hidden nodes by one to see the decline in R-value. This 
iterative procedure continued until the optimum ANN 
architecture with 6 hidden nodes shown in Fig. 3 resulted. The 
feasibility of the proposed method for future load profile 
generation was investigated using the case study of different 
PV and EV penetrations for the autumn season for which the 
ANN does not have a priori knowledge from training. 

 
Fig. 3. ANN architecture for future load profile prediction model. 

G. Prediction performance metrics 

 The statistical metrics used for examining the prediction 
accuracy and comparing the performance of ANN to regression 
were: the root mean square error (RMSE), the mean absolute 
error (MAE) and the mean absolute percentage error (MAPE). 
They are defined by the following statistical equations: 

                                             (1)                                                      

                                                 (2)                                                                            

                                    (3)                                                                  

 Where Pi and Ai are the synthetic load profile data and 
actual load profile data at the ith point respectively, and n is the 
total number of data points (i.e. 24 per load profile for hourly 
resolution). 

III. RESULTS AND DISCUSSION 

To validate the suitability of the proposed ANN for 
generating synthetic future residential load profiles, the 
performance of ANN model was compared to multiple linear 
regression (MLR) – a common prediction model. This section 
compares the training and prediction performance of both 
models.  

A. Training 

Both ANN and regression models were trained using the 
same input weather and target load data, and the whole range 
of penetration levels of PV and EV described in section II.C,  
with hourly resolution. The training data was for spring, 
summer and winter of the typical year. To analyse the fitness of 
the model the output of the ANN and regression models with 
the training data was compared to the actual load profiles 
(targeted training outputs). Owing to the 112 (in-total) 
combinations of PV and EV penetration scenarios and 3 
seasons, there were 336 twenty-four hour load profiles (ANN, 
MLR and actual) to be compared. Fig. 4 and 5 show 
representative comparison obtained for 2 (out of the 300 
scenarios) namely: 10% PV penetration and 10% EV 
penetration in spring and 50% PV penetration and 70% EV 
penetration in winter. 

 
Fig. 4. Training results for 10% PV and 10% EV penetration in spring 

For a typical day in spring, with 10% PV penetration and 

10% EV penetration, ANN shows a markedly better 

approximation to the actual load profile than MLR - as shown 

in Fig. 4. In Fig. 5, for the scenario of 50% PV penetration and 

70% EV penetration on a typical winter, the difference 

between the training performance of both models is not so 

apparent. However, because these two scenarios are only 

small portions of a large training dataset, a statistical 

description of training performance over the entire dataset is 

desirable and is described by the MAPE, MAE and RMSE 

values in Table 1. 



 
Fig. 5. Training results for 50% PV and 70% EV penetration in winter 

TABLE I.                                                                                                            

TRAINING PERFORMANCE OF ANN AND MLR FOR SPRING, SUMMER AND 

WINTER UNDER VARIOUS PV AND EV PENETRATION SCENARIOS 

 ANN MLR 

MAPE 7.2931% 18.3632% 

MAE 0.0349 0.1959 

RMSE 0.0492 0.2562 

 
From Table 1, it is apparent that ANN has much better 

training accuracy than MLR. MAPE of 7.29% for ANN means 
that the ANN trains with about 93% accuracy as compared to 
about 82% for MLR. The MAE and RMSE values also support 
the fact that ANN trains better.  

B. Validation 

Input weather data, PV and EV penetration levels and 
composite load profiles for autumn season of the typical year 
(for which the ANN models have no a priori knowledge) was 
used to test both ANN and MLR prediction models. Fig. 6 
compares the predicted load profile for a day in autumn with 
the actual load profile, for a scenario of 20% PV penetration 
and 30% EV penetration. The predicted load profile using 
ANN closely approximates the actual load profile. On the other 
hand, MLR prediction shows a marked divergence from the 
actual load profile. The superior prediction performance of 
ANN is statistically supported by Table 2, with MLR showing 
a prediction accuracy of just about 15% for the test season 
(autumn). The ANN model has been proved to be a viable 
model for generation of synthetic load profile in the face of 
increasing penetration of PV and EV resources. The 
complexity of the prediction process can be easily visualised 
from the comparison to the MLR model. 

 
Fig. 6. Testing results for 20% PV and 30% EV penetration in autumn 

TABLE II.                                                                                                           

TESTING PERFORMANCE OF ANN AND MLR FOR 20% PV PENETRATION AND 

30% EV PENETRATION IN AUTUMN 

 ANN MLR 

MAPE 20.8407% 74.8303% 

MAE 0.0765 0.1959 

RMSE 0.1035 0.2481 

IV. CONCLUSIONS 

The feasibility of using an ANN based method to 
synthesise future residential load profiles under increasing 
levels of EV/PV penetration was investigated in this paper. The 
performance of the ANN model was evaluated through the use 
of a case study developed for a targeted region of the UK. 

In order to minimise training difficulty and time the structure 

of the ANN model was kept as simple as possible. The model 

was trained using the Levenberg-Marquardt algorithm with 

publically available data. 

The performance of the ANN model was compared to a MLR 

model which had been trained using the same data in a case 

study of different EV and PV penetration levels. Statistical 

analysis of the experimental results showed that during testing 

the ANN model performed with an accuracy of approximately 

79% compared to the MLR model accuracy of approximately 

15%. The experimental results show that the ANN model has 

the ability to capture non-linear relationships even when 

trained with limited data from publically available sources. 

The results prove the feasibility of the proposed ANN based 

method for synthesising future residential load profiles under 

increasing levels of EV and PV penetration. The 

computational method presented in this paper could be used to 

replace traditional methods which are not suitable for 

modelling the increasingly complex power networks of the 

future. 

This work will be extended to other renewables and customer 

classes in future. 
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