28 research outputs found

    Mechanosensing is critical for axon growth in the developing brain.

    Get PDF
    During nervous system development, neurons extend axons along well-defined pathways. The current understanding of axon pathfinding is based mainly on chemical signaling. However, growing neurons interact not only chemically but also mechanically with their environment. Here we identify mechanical signals as important regulators of axon pathfinding. In vitro, substrate stiffness determined growth patterns of Xenopus retinal ganglion cell axons. In vivo atomic force microscopy revealed a noticeable pattern of stiffness gradients in the embryonic brain. Retinal ganglion cell axons grew toward softer tissue, which was reproduced in vitro in the absence of chemical gradients. To test the importance of mechanical signals for axon growth in vivo, we altered brain stiffness, blocked mechanotransduction pharmacologically and knocked down the mechanosensitive ion channel piezo1. All treatments resulted in aberrant axonal growth and pathfinding errors, suggesting that local tissue stiffness, read out by mechanosensitive ion channels, is critically involved in instructing neuronal growth in vivo.This work was supported by the German National Academic Foundation (scholarship to D.E.K.), Wellcome Trust and Cambridge Trusts (scholarships to A.J.T.), Winston Churchill Foundation of the United States (scholarship to S.K.F.), Herchel Smith Foundation (Research Studentship to S.K.F.), CNPq 307333/2013-2 (L.d.F.C.), NAP-PRP-USP and FAPESP 11/50761-2 (L.d.F.C.), UK EPSRC BT grant (J.G.), Wellcome Trust WT085314 and the European Research Council 322817 grants (C.E.H.); an Alexander von Humboldt Foundation Feodor Lynen Fellowship (K.F.), UK BBSRC grant BB/M021394/1 (K.F.), the Human Frontier Science Program Young Investigator Grant RGY0074/2013 (K.F.), the UK Medical Research Council Career Development Award G1100312/1 (K.F.) and the Eunice Kennedy Shriver National Institute Of Child Health & Human Development of the National Institutes of Health under Award Number R21HD080585 (K.F.).This is the author accepted manuscript. The final version is available from Nature Publishing Group via https://doi.org/10.1038/nn.439

    Ex Vivo Expansion of Th2-Polarizing Immunotherapeutic iNKT Cells from Human Peripheral Blood

    No full text
    iNKT cells, classified as innate lymphocytes with invariant TCRs, have been highlighted as a putative, “off-the-shelf” cellular immunotherapeutic strategy for the treatment of malignant and nonmalignant diseases. However, their paucity in human blood limits their immunotherapeutic applications. Herein we describe a rigorously optimized 21-day ex vivo expansion method to achieve log-fold increases in immunotherapeutic human iNKT cells

    CyTOF ® for the Masses

    No full text
    Mass cytometry has revolutionized immunophenotyping, particularly in exploratory settings where simultaneous breadth and depth of characterization of immune populations is needed with limited samples such as in preclinical and clinical tumor immunotherapy. Mass cytometry is also a powerful tool for single-cell immunological assays, especially for complex and simultaneous characterization of diverse intratumoral immune subsets or immunotherapeutic cell populations. Through the elimination of spectral overlap seen in optical flow cytometry by replacement of fluorescent labels with metal isotopes, mass cytometry allows, on average, robust analysis of 60 individual parameters simultaneously. This is, however, associated with significantly increased complexity in the design, execution, and interpretation of mass cytometry experiments. To address the key pitfalls associated with the fragmentation, complexity, and analysis of data in mass cytometry for immunologists who are novices to these techniques, we have developed a comprehensive resource guide. Included in this review are experiment and panel design, antibody conjugations, sample staining, sample acquisition, and data pre-processing and analysis. Where feasible multiple resources for the same process are compared, allowing researchers experienced in flow cytometry but with minimal mass cytometry expertise to develop a data-driven and streamlined project workflow. It is our hope that this manuscript will prove a useful resource for both beginning and advanced users of mass cytometry
    corecore