1,094 research outputs found

    Attenuation of photosynthetically active radiation and ultraviolet light in response to changing dissolved organic carbon in browning lakes : modelling and parametrization

    Get PDF
    We present and evaluate an update to the process-based lake model MyLake that includes a time-varying linkage between light attenuation of both photosynthetically active radiation (PAR) and ultraviolet (UV) radiation wavelengths to changes in dissolved organic carbon (DOC). In many parts of northeastern North America and Europe, DOC in lakes has rapidly increased, leading to reduced water transparency and increases in light attenuation. These changes alter the vertical light and heat distribution that affect vertical structuring of temperature and dissolved oxygen. We use this model update to test the responsiveness of PAR and UV attenuation to short-term fluctuations in DOC and with a test case of long-term browning at Lake Giles (Pennsylvania). Lake Giles has browned significantly since the late 1980s, and three decades of detailed empirical data have indicated more than a doubling of DOC concentrations, and consequent increases in PAR and UV attenuation, warming surface waters, cooling deep waters, and increasing deepwater oxygen depletion. We found that the model performance improved by 16% and 52% for long-term trends in PAR and UV attenuation, respectively, when these coefficients respond directly to in-lake DOC concentrations. Further, long-term trends in surface water warming, deepwater cooling, and deepwater oxygen depletion in Lake Giles were better captured by the model following this update, and were very rapid due to its high water transparency and low DOC. Hence, incorporating a responsive link between DOC and light attenuation in lake models is key to understanding long-term lake browning patterns, mechanisms, and ecological consequences

    Calculation Of Raman Scattering By Acoustic Phonons In Superlattices

    Get PDF
    We report on the calculation of low-frequency Raman scattering by longitudinal acoustic phonons in superlattices. The phonons are treated as elastic waves propagating in a continuum and their mode patterns are calculated by a transfer-matrix method. The electromagnetic propagation is calculated neglecting reflections and refractions at the interfaces, through the use of the same index of refraction for both constituent materials. The use of a complex refraction index allows for absorption effects to be included. The suitability of the numerical calculation for modeling superlattices is demonstrated. © 1994 The American Physical Society.5016118451184

    Emission Spectra from Internal Shocks in Gamma-Ray-Burst Sources

    Get PDF
    Unsteady activity of gamma-ray burst sources leads to internal shocks in their emergent relativistic wind. We study the emission spectra from such shocks, assuming that they produce a power-law distribution of relativistic electrons and posses strong magnetic fields. The synchrotron radiation emitted by the accelerated electrons is Compton up-scattered multiple times by the same electrons. A substantial component of the scattered photons acquires high energies and produces e+e- pairs. The pairs transfer back their kinetic energy to the radiation through Compton scattering. The generic spectral signature from pair creation and multiple Compton scattering is highly sensitive to the radius at which the shock dissipation takes place and to the Lorentz factor of the wind. The entire emission spectrum extends over a wide range of photon energies, from the optical regime up to TeV energies. For reasonable values of the wind parameters, the calculated spectrum is found to be in good agreement with the burst spectra observed by BATSE.Comment: 12 pages, latex, 2 figures, submitted to ApJ

    Radiation-Induced Error Criticality in Modern HPC Parallel Accelerators

    Get PDF
    In this paper, we evaluate the error criticality of radiation-induced errors on modern High-Performance Computing (HPC) accelerators (Intel Xeon Phi and NVIDIA K40) through a dedicated set of metrics. We show that, as long as imprecise computing is concerned, the simple mismatch detection is not sufficient to evaluate and compare the radiation sensitivity of HPC devices and algorithms. Our analysis quantifies and qualifies radiation effects on applications’ output correlating the number of corrupted elements with their spatial locality. Also, we provide the mean relative error (dataset-wise) to evaluate radiation-induced error magnitude. We apply the selected metrics to experimental results obtained in various radiation test campaigns for a total of more than 400 hours of beam time per device. The amount of data we gathered allows us to evaluate the error criticality of a representative set of algorithms from HPC suites. Additionally, based on the characteristics of the tested algorithms, we draw generic reliability conclusions for broader classes of codes. We show that arithmetic operations are less critical for the K40, while Xeon Phi is more reliable when executing particles interactions solved through Finite Difference Methods. Finally, iterative stencil operations seem the most reliable on both architectures.This work was supported by the STIC-AmSud/CAPES scientific cooperation program under the EnergySFE research project grant 99999.007556/2015-02, EU H2020 Programme, and MCTI/RNP-Brazil under the HPC4E Project, grant agreement n° 689772. Tested K40 boards were donated thanks to Steve Keckler, Timothy Tsai, and Siva Hari from NVIDIA.Postprint (author's final draft
    • …
    corecore