24 research outputs found

    Caveolin-1 implicated as a pro-invasive gene in high-grade glioma cell models: implementation of a 3d spheroid matrix invasion assay

    Get PDF
    INTRODUCTION: The poor prognosis associated with Glioblastoma multiforme (GBM) is multifactorial but includes the capacity of residual tumour cells not removed by surgery and resistant to radio-/chemo-therapy undergoing diffuse invasion into the surrounding brain tissue. Caveolin-1 (Cav-1) is the major structural and functional component of caveolae. In a number of tumour types Cav-1 is recognised to participate in cytoskeletal rearrangement, integrin-mediated adhesion and/or matrix remodelling. We proposed Cav-1 serves to promote invasion of GBM cells. To investigate this we have employed in an in-vitro 3D cellular invasion assay. METHOD: The human GBM cell lines, UP007 and UP029 established from primary cultures of biopsy-derived brain tumours (University of Portsmouth), U-87 MG (ECACC) and U-373 MG (ECACC) were genetically modified to stably knock-out Cav-1 using a Lentiviral Cav-1 shRNA approach; corresponding stably transfected non-target (NT) shRNA cell lines were generated as controls. Neuropheres were formed and embedded within an extracellular matrix (Matrigel™). Over a two-/four-day period (depending on cell line) the migration of cells away from the neurophere core (CORE) was quantified by image capture and processing (Image J) using a custom-developed MatLab script for pixel density analysis indicative of the density of migrating cellular material. RESULTS: Cav-1 knockout resulted in significant (P0.05) towards reduced invasion. Depending upon the cell line the Cav-1 knockdown also resulted in reduced size and cellular density of the neurosphere core (UP007 and UP029) indicative of reduced proliferation and/or cell survival capacity. CONCLUSION: Using an in-vitro 3D cellular invasion assay we have found Cav-1 expression in a series of three GBM cell lines to promote cellular invasion capacity. Ongoing studies are addressing signalling mechanisms and the influence of the microenvironment

    INSIDIA:a FIJI macro delivering high-throughput and high-content spheroid invasion analysis

    Get PDF
    Time-series image capture of in vitro 3D spheroidal cancer models embedded within an extracellular matrix affords examination of spheroid growth and cancer cell invasion. However, a customizable, comprehensive and open source solution for the quantitative analysis of such spheroid images is lacking. Here, the authors describe INSIDIA (INvasion SpheroID ImageJ Analysis), an open-source macro implemented as a customizable software algorithm running on the FIJI platform, that enables high-throughput high-content quantitative analysis of spheroid images (both bright-field gray and fluorescent images) with the output of a range of parameters defining the spheroid “tumor” core and its invasive characteristics

    Models for CNS malignancies

    No full text

    Induction of membrane-type-1 matrix metalloproteinase by epidermal growth factor-mediated signaling in gliomas

    No full text
    This study showed for the first time that one mechanism of EGFR-mediated invasiveness in gliomas may involve the induction of membrane-type metalloproteinase (MT1-MMP)
    corecore