5 research outputs found

    Агрегаційна стійкість наночастинок на основі рідкісноземельних елементів в різному мікрооточенні та біологічних середовищах

    Get PDF
    Актуальність. На сьогоднішній день актуальним завданням сучасної медицини і фармації є створення нових лікарських форм, здатних підвищити терапевтичну ефективність уже відомих лікарських речовин, знизити побічні ефекти, збільшити комфортність лікування для пацієнта. Одним із найперспективніших напрямів у цій галузі є використання різних наноматеріалів, серед яких привертають увагу наноматеріали на основі рідкісноземельних елементів (РЗЕ). В той же час, питання щодо зв'язку біологічної активності наноматеріалів з їх фізико-хімічними властивостями, а також особливостей взаємодії з мікрооточенням в біосистемах залишаються дискусійними. Мета роботи. Оцінити агрегаційну стійкість наночастинок (НЧ) на основі РЗЕ в інкубаційних середовищах різного складу та роль окремих чинників у стабілізації НЧ в біологічному мікрооточенні. Методи дослідження. В дослідженнях визначали агрегаційну стійкість наночастинок GdYVO4:Eu3+, LaVO4: Eu3+, CeO2, GdVO4:Eu3+ для чого використовували методи динамічного та електрофоретичного рoзсіювання світла. Інкубацію НЧ проводили в 5% глюкозі або буферах: 50 мМ Трис буфер (з рiзними рН фізіологічного діапазону); середовище Ігла МЕМ; Кребс-Рінгер буфер pH 7,4; HBSS-буфер (HEPES-buffered-saline-solution) pH 7,4, за відсутності або присутності 0,2% БСА, протягом 30 хвилин та 24 годин. Охарактеризовано також вплив окремих компонентів біологічних буферних розчинів (глутатіон окиснений та відновлений) на процеси агрегації. Результати. Результати показали, що на відміну від стабілізуючого впливу розчину 5% глюкози, в сольових системах відбувається значна агрегація наночастинок. Найбільший ступінь агрегації зазначено в середовищі Ігла МЕМ та Кребс-Рінгер буфера. Додавання до всіх середовищ 0,2% альбуміну перешкоджало агрегації. При взаємодії наночастинок з імуноглобуліном спостерігалося збільшення гідродинамічного діаметру, особливо значне для деяких типів наночастинок вже при найменших з використаних концентрацій білку. Сприяв агрегації всіх типів ортованадатних НЧ в кислому середовищі (Трис-буфері рН=6,7) окислений, але не відновлений глутатіон. Висновки. Агрегативна стабільність НЧ в сольових інкубаційних середовищах значно підвищується за присутності сироваткового альбуміну, що пов’язано зі змінами співвідношення електростатичного та стеричного компонентів взаємодії НЧ з мікрооточенням

    Metal-support interaction and charge distribution in ceria-supported Au particles exposed to CO

    Full text link
    Understanding how reaction conditions affect metal-support interactions in catalytic materials is one of the most challenging tasks in heterogeneous catalysis research. Metal nanoparticles and their supports often undergo changes in structure and oxidation state when exposed to reactants, hindering a straightforward understanding of the structure-activity relations using only ex situ or ultrahigh vacuum techniques. Overcoming these limitations, we explored the metal-support interaction between gold nanoparticles and ceria supports in ultrahigh vacuum and after exposure to CO. A combination of in situ methods (on powder and model Au/CeO2 samples) and theoretical calculations was applied to investigate the gold/ceria interface and its reactivity toward CO exposure. X-ray photoelectron spectroscopy measurements rationalized by first-principles calculations reveal a distinctly inhomogeneous charge distribution, with Au+ atoms in contact with the ceria substrate and neutral Au0 atoms at the surface of the Au nanoparticles. Exposure to CO partially reduces the ceria substrate, leading to electron transfer to the supported Au nanoparticles. Transferred electrons can delocalize among the neutral Au atoms of the particle or contribute to forming inert Auδ− atoms near oxygen vacancies at the ceria surface. This charge redistribution is consistent with the evolution of the vibrational frequencies of CO adsorbed on Au particles obtained using diffuse reflectance infrared Fourier transform spectroscopy

    Kitkaite NiTeSe, an Ambient-Stable Layered Dirac Semimetal with Low-Energy Type-II Fermions with Application Capabilities in Spintronics and Optoelectronics

    Full text link
    The emergence of Dirac semimetals has stimulated growing attention, owing to the considerable technological potential arising from their peculiar exotic quantum transport related to their nontrivial topological states. Especially, materials showing type-II Dirac fermions afford novel device functionalities enabled by anisotropic optical and magnetotransport properties. Nevertheless, real technological implementation has remained elusive so far. Definitely, in most Dirac semimetals, the Dirac point lies deep below the Fermi level, limiting technological exploitation. Here, it is shown that kitkaite (NiTeSe) represents an ideal platform for type-II Dirac fermiology based on spin-resolved angle-resolved photoemission spectroscopy and density functional theory. Precisely, the existence of type-II bulk Dirac fermions is discovered in NiTeSe around the Fermi level and the presence of topological surface states with strong (≈50%) spin polarization. By means of surface-science experiments in near-ambient pressure conditions, chemical inertness towards ambient gases (oxygen and water) is also demonstrated. Correspondingly, NiTeSe-based devices without encapsulation afford long-term efficiency, as demonstrated by the direct implementation of a NiTeSe-based microwave receiver with a room-temperature photocurrent of 2.8 µA at 28 GHz and more than two orders of magnitude linear dynamic range. The findings are essential to bringing to fruition type-II Dirac fermions in photonics, spintronics, and optoelectronics. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH.I.V., A.B.S., and L.Z. contributed equally to this work. L.W. acknowledged support from the State Key Program for Basic Research of China (No. 2017YFA0305500, 2018YFA0306204), Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01), and the Science and Technology Commission of Shanghai Municipality (21ZR1473800). A.P. thanks CERIC‐ERIC for the access to the NAP‐XPS facility. D.W.B. acknowledged support from the Ministry of Science and Higher Education of the Russian Federation (through the basic part of the government mandate, Project No. FEUZ‐2020‐0060) and Jiangsu Innovative and Entrepreneurial Talents Project. This work has been partly performed in the framework of the nanoscience foundry and fine analysis (NFFA‐MUR Italy Progetti Internazionali) facility. A.B, B.G, and A.A. acknowledge funding from Science and Engineering Research Board (SERB) and Department of Science and Technology (DST), government of India. A.A. thanks the HPC facility at IIT Kanpur for computational resources

    Revisiting the Chemical Stability of Germanium Selenide (GeSe) and the Origin of its Photocatalytic Efficiency

    Full text link
    Recently, germanium selenide (GeSe) has emerged as a promising van der Waals semiconductor for photovoltaics, solar light harvesting, and water photoelectrolysis cells. Contrary to previous reports claiming perfect ambient stability based on experiments with techniques without surface sensitivity, here, by means of surface-science investigations and density functional theory, it is demonstrated that actually both: i) the surface of bulk crystals; and ii) atomically thin flakes of GeSe are prone to oxidation, with the formation of self-assembled germanium-oxide skin with sub-nanometric thickness. Surface oxidation leads to the decrease of the bandgap of stoichiometric GeSe and GeSe1−x, while bandgap energy increases upon surface oxidation of Ge1−xSe. Remarkably, the formation of a surface oxide skin on GeSe crystals plays a key role in the physicochemical mechanisms ruling photoelectrocatalysis: the underlying van der Waals semiconductor provides electron–hole pairs, while the germanium-oxide skin formed upon oxidation affords the active sites for catalytic reactions. The self-assembled germanium-oxide/germanium-selenide heterostructure with different bandgaps enables the activation of photocatalytic processes by absorption of light of different wavelengths, with inherently superior activity. Finally, it is discovered that, depending on the specific solvent-GeSe interaction, the liquid phase exfoliation of bulk crystals can induce the formation of Se nanowires. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbHA.P. thanks CERIC-ERIC for the access to the NAP-XPS facility and Elettra Sincrotrone Trieste for providing access to its synchrotron radiation facilities. S.N. and F.B. acknowledge funding from EUROFEL project (RoadMap Esfri), J.D.S., V.P., and A.P. thank Maria Giammatteo for technical support in SEM experiments at Microscopy Centre of University of L'Aquila. Open access funding provided by Universita degli Studi dell'Aquila within the CRUI-CARE Agreement
    corecore