1,181 research outputs found

    Spatial variability of hydrologic response on naturally vegetated hillslopes in a semi-arid environment.

    Get PDF
    Application of discriminant analysis to the soil/slope data validated the landsurface unit classification and identified the most useful mapping criteria. Seven variables measuring soil depth, soil texture, microroughness, and the areal percentage coverage of bare/eroded micro soil surfaces provided satisfactory discrimination of the six soil/slope groups.The hypothesis examined in this study suggests that spatial variability in overland flow and sediment yield on hillslopes in a semi-arid environment are related to the spatial distribution of specific soil/slope characteristics. Analysis of overland flow, sediment yield, and soil/slope data supports the research hypothesis by validating the field classification of erosional and depositional landsurface units, and in identifying distinctly different hydrologic responses between two landsurface units on three separate catenas.Four measures of hydrologic response were used to test for differences in overland flow and sediment yield between the landsurface units; overland flow response to individual rainfall events, sediment yield from individual rainfall events, total sediment yield for the six year period of recording, and rainsplash efficacy. All four attributes substantiated the hypothesized relationships

    Bias in Zipf's Law Estimators

    Get PDF
    The prevailing maximum likelihood estimators for inferring power law models from rank-frequency data are biased. The source of this bias is an inappropriate likelihood function. The correct likelihood function is derived and shown to be computationally intractable. A more computationally efficient method of approximate Bayesian computation (ABC) is explored. This method is shown to have less bias for data generated from idealised rank-frequency Zipfian distributions. However, the existing estimators and the ABC estimator described here assume that words are drawn from a simple probability distribution, while language is a much more complex process. We show that this false assumption leads to continued biases when applying any of these methods to natural language to estimate Zipf exponents. We recommend that researchers be aware of these biases when investigating power laws in rank-frequency data.Comment: 15 pages, 11 figure

    High frequency dynamics in liquid nickel: an IXS study

    Full text link
    Owing to their large relatively thermal conductivity, peculiar, non-hydrodynamic features are expected to characterize the acoustic-like excitations observed in liquid metals. We report here an experimental study of collective modes in molten nickel, a case of exceptional geophysical interest for its relevance in Earth interior science. Our result shed light on previously reported contrasting evidences: in the explored energy-momentum region no deviation from the generalized hydrodynamic picture describing non conductive fluids are observed. Implications for high frequency transport properties in metallic fluids are discussed.Comment: 6 pages, 4 figures, to appear in "Journal of Chemical Physics

    Field Application of Spent Lime Water Treatment Residual for the Removal of Phosphorus and other Pollutants in Urban Stormwater Runoff

    Get PDF
    The threat of anthropogenic eutrophication and harmful algal blooms in lakes requires the development of innovative stormwater best management practices (BMPs) to reduce the external loading of phosphorus (P). This paper presents the findings of a 5-year study of a full-scale P removal structure constructed in Minnesota, USA with spent lime drinking water treatment residual (DWTR), a by-product of water softening at a local water treatment plant. Influent and effluent water samples were collected by auto-samplers during 43 storm events during the growing season. Samples were analyzed for P constituents, heavy metals, total suspended solids (TSS), and pH. Toxicity of the effluent was assessed using Ceriodaphnia dubia. Flow-weighted removal effectiveness was calculated for each storm event. Overall, the spent lime DWTR reduced total P loading by 70.9%, dissolved reactive P by 78.5%, dissolved P by 74.7%, and TSS by 58.5%. A significant reduction in heavy metals was also observed. Toxicity tests indicated the aquatic toxicity of the effluent treated with spent lime DWTR was not different from untreated stormwater. This study provided long-term real-world data that demonstrated that a full-scale P removal structure with spent lime DWTR significantly reduced P and other pollutants in stormwater discharging to an urban lake. Therefore, spent lime DWTR, which is currently treated as a waste product, is a promising filter material for stormwater treatment

    The phonon theory of liquid thermodynamics

    Get PDF
    Heat capacity of matter is considered to be its most important property because it holds information about system's degrees of freedom as well as the regime in which the system operates, classical or quantum. Heat capacity is well understood in gases and solids but not in the third state of matter, liquids, and is not discussed in physics textbooks as a result. The perceived difficulty is that interactions in a liquid are both strong and system-specific, implying that the energy strongly depends on the liquid type and that, therefore, liquid energy can not be calculated in general form. Here, we develop a phonon theory of liquids where this problem is avoided. The theory covers both classical and quantum regimes. We demonstrate good agreement of calculated and experimental heat capacity of 21 liquids, including noble, metallic, molecular and hydrogen-bonded network liquids in a wide range of temperature and pressure.Comment: 7 pages, 4 figure

    Evidence of short time dynamical correlations in simple liquids

    Full text link
    We report a molecular dynamics (MD) study of the collective dynamics of a simple monatomic liquid -interacting through a two body potential that mimics that of lithium- across the liquid-glass transition. In the glassy phase we find evidences of a fast relaxation process similar to that recently found in Lennard-Jones glasses. The origin of this process is ascribed to the topological disorder, i.e. to the dephasing of the different momentum QQ Fourier components of the actual normal modes of vibration of the disordered structure. More important, we find that the fast relaxation persists in the liquid phase with almost no temperature dependence of its characteristic parameters (strength and relaxation time). We conclude, therefore, that in the liquid phase well above the melting point, at variance with the usual assumption of {\it un-correlated} binary collisions, the short time particles motion is strongly {\it correlated} and can be described via a normal mode expansion of the atomic dynamics.Comment: 7 pages, 7 .eps figs. To appear in Phys. Rev.
    • …
    corecore