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Natural reaction cascades control the movement of biomolecules between cellular compartments. 

Inspired by these systems, we report a synthetic reaction cascade employing post-assembly 

modification reactions to direct the partitioning of supramolecular complexes between phases. The 

system is comprised of a self-assembled tetrazine-edged FeII
8L12 cube and a maleimide-functionalized 

FeII
4L6 tetrahedron. Norbornadiene (NBD) functions as the stimulus that triggers the cascade, 

beginning with the inverse electron-demand Diels-Alder reaction of NBD with the tetrazine moieties 

of the cube. This reaction generates cyclopentadiene as a transient by-product, acting as a relay signal 

that subsequently undergoes a Diels-Alder reaction with the maleimide-functionalized tetrahedron. 

Cyclooctyne can selectively inhibit the cascade by outcompeting NBD as the initial trigger. Triggering 

the cascade with 2-octadecylNBD leads to selective alkylation of the tetrahedron upon cascade 

completion. The increased lipophilicity of the C18-tagged tetrahedron drives this complex into a non-

polar phase, allowing its isolation from the initially inseparable mixture of complexes.  

Reaction cascades allow information to be relayed1 from an initial stimulus to an eventual output across 

relatively long distances within biological systems.2 Such cascades frequently involve sequences of 

selective covalent bond forming reactions that act on self-assembled biomolecules, such as the post-

translational modification (PTM) of proteins3 or epigenetic modification of DNA.4 These cascades, which 

can be mediated by the action of fleeting signal molecules such as nitric oxide,5 enable cells to respond 

dynamically to their environment in response to changing biochemical demands. Inspired by these natural 

cascades, organic chemists have developed cascade reactions for performing multiple bond-forming 

processes within a single reaction flask, thereby simplifying synthetic routes to complicated molecules. 

Recently, some of these cascades have featured supramolecular elements such as container molecules, 

which act as ‘nanoreactors’6, 7 to facilitate particular steps in the cascade.8-11 There have also been efforts 

to include features critical to biological functions, such as inhibition or feedback loops,12 to develop more 

complex supramolecular systems that exhibit nuanced responses to transient chemical species. To date, 

however, none of these supramolecular cascades have harnessed covalent post-assembly modification 

(PAM) of the supramolecular components as a mechanism for signal transduction.  

Covalent PAM reactions must satisfy several prerequisites before they can be successfully employed for 

the structural alteration of a discrete supramolecular complex: they must be chemoselective, afford near-

quantitative yields and proceed under mild conditions to avoid damaging the complex. Due to these 

stringent requirements, ‘click’ reactions, such as the strain-promoted Huisgen alkyne–azide cycloaddition13, 

14 or inverse electron-demand Diels-Alder (IEDDA) cycloaddition,15, 16 have been particularly useful as 

PAM reactions. To date, covalent PAM of metal-organic complexes17 has been used to alter the product 

distribution in systems of self-assembled complexes18-20 modify solubility properties,21 stabilize metastable 

structures,22 change the nature of a capsule’s cavity to control guest binding,23, 24 generate complex 

molecular topologies25-28 and graft molecules of interest onto self-assembled structures.29 Despite this 
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versatility, PAM in these previous examples has been exclusively carried out either on individual 

complexes or via orthogonal reactions on different complexes within the same system, rather than via the 

interlinked steps of a cascade. By coupling together multiple PAM reactions into a single sequence, here 

we demonstrate signal transduction in a supramolecular system to control the movement of a nanometre-

sized complex across a phase boundary. This sequence evokes the cellular signalling pathways that drive 

the translocation of biomolecules across biological membranes. 

 

Results and Discussion 

The cascade system developed herein features tetrazine-edged FeII
8L12 cube 1a and maleimide-

functionalized FeII
4L6 tetrahedron 3, which undergo a tandem sequence of IEDDA and normal electron-

demand Diels-Alder (DA) reactions connected via a transient relay signal. The cascade is triggered by the 

addition of 2-octadecylnorbornadiene (C18-NBD), which undergoes IEDDA reactions on its least-hindered 

side with the tetrazines of cube 1a to give pyridazine-edged cube 2 and 1-octadecylcyclopentadiene 

(C18-CPD) as a metastable intermediate (Fig. 1). The C18-CPD by-product of the first reaction step 

subsequently acts as a relay signal for the second DA reaction step, in which the maleimide units of 

tetrahedron 3 are converted into the C18-norbornene moieties of tetrahedron 4d. In the absence of a 

C18-NBD trigger, the initial state of the cascade system is stable due to the orthogonal Diels-Alder 

reactivities of cube 1a and tetrahedron 3. The alkyl chains appended to complex 4d following the cascade 

render it sufficiently lipophilic to undergo spontaneous phase transfer from a polar organic phase 

(CH3CN/CHCl3 9:1) to a non-polar organic phase (cyclopentane).  

Cube 1a is derived from subcomponent A, whose design combines two strategies: the use of a ligand whose 

twin 4-substituted 2-formylpyridine moieties are arrayed in the correct geometry to generate an M8L12 cubic 

framework,30 and the incorporation of 3,6-disubstituted tetrazine spacers into ligand frameworks to enable 

PAM by IEDDA reactions.16 Cube 1a was thus prepared (see Methods) by the subcomponent self-

assembly31 of dialdehyde A, which was synthesized in a protecting-group-free three-step sequence 

(Supplementary Fig. 1),32-34 para-tert-butylaniline and iron(II) bis(trifluoromethane)sulfonimide, 

(Fe(NTf2)2), in CH3CN at 333 K for 16 h (Fig. 1). After purification, ESI-MS of the reaction mixture 

confirmed the formation of an FeII
8L12 complex in solution (Supplementary Fig. 12). 1H NMR analysis of 

the reaction mixture revealed the formation of a single product having only one signal for each unique 

ligand environment, consistent with the expected cubic geometry (Supplementary Fig. 10). The high 

solubility of 1a in typical non-solvents precluded its crystallization. Fortunately, the lower solubility of 

cube 1b, which was prepared using para-toluidine in place of 4-tert-butylaniline, proved conducive to the 

growth of single crystals of this complex, obtained by slow vapour diffusion of iPr2O into a solution of 

1b[NTf2]16 containing KAsF6 (~100 equiv.). X-ray diffraction analysis confirmed complex 1b to be an 

achiral FeII
8L12 cube of idealized Th point group symmetry in the solid state,30 with adjacent vertices of 

alternating Λ and Δ handedness (Fig. 2a) (Supplementary Figs 94-96).  



 

 

Figure 1 | Overview of syntheses and post-assembly modification cascade. Complexes 1a and 3 are 

assembled from dialdehydes A and B respectively. The PAM cascade proceeds via inverse electron-demand 

Diels-Alder and subsequent normal electron-demand Diels-Alder reactions to convert 1a and 3 into 

complexes 2 and 4(a-d) respectively. 

Tetrahedron 3, functionalized with pendant maleimide groups, was designed as a suitable reaction partner 

for the alkylated-CPD relay signal released from the IEDDA reaction in the first step, which required the 

synthesis of novel maleimide-functionalized aniline C. This aniline features an ethylene spacer to reduce 

steric congestion at the vertices of the tetrahedron. Aniline C was prepared in three steps from 

commercially-available starting materials (Supplementary Fig. 26).35 Tetrahedron 3 was subsequently 

prepared (see Methods) by subcomponent self-assembly of dialdehyde B,36 aniline C, and iron(II) 

bis(trifluoromethane)sulfonimide, (Fe(NTf2)2) in CH3CN at 333 K for 16 h (Fig. 1). Slow vapour diffusion 

of iPr2O into a CH3CN solution of 3 containing Bu4NPF6 (~100 equiv.) yielded single crystals suitable for 

X-ray diffraction analysis, unambiguously confirming the T-symmetric framework of 3 in the solid state 

(Fig. 2b), echoing the results of solution ESI-MS and 1H NMR analyses (Supplementary Figs 35 and 38). 



 

Figure 2 | Depictions (same scale) of the X-ray crystal structures. a. Cube 1b. b. The PF6
− adduct of 

tetrahedron 3. c. The AsF6
− adduct of modified tetrahedron 4a. Key: grey = carbon, white = hydrogen, red 

= oxygen, blue = nitrogen, orange = iron, light green = fluorine. Disorder and non-encapsulated anions have 

been omitted for clarity. Iron atoms are connected with orange lines to illustrate the overall geometry of 

each complex.  

Before investigating the PAM cascade with an alkylated-NBD, we first tested its viability in a model system 

using commercially-available, unsubstituted NBD. In this model system, the relay signal CPD could also 

be easily prepared by cracking dicyclopentadiene, allowing the IEDDA and DA steps to be examined in 

isolation to afford pure samples of both product complexes 2 and 4a for characterization purposes. 

The reaction of cube 1a with NBD (16 equiv. per cube) proceeded cleanly to furnish dodecafunctionalized 

pyridazine-edged cube 2 as the only supramolecular product, alongside the CPD by-product, within 4 h, as 

verified by 1H NMR and ESI-MS analyses (Supplementary Figs 41 and 42). At intermediate time points, 

desymmetrization of the cage signals was observed; however, the characteristic signals from the vertex 

protons on the complex persisted and no signals from free subcomponents appeared, suggesting that the 

ligands did not dissociate from the cage during this reaction sequence.16 To test the reactivity of tetrahedron 

3 towards the CPD relay signal in isolation, freshly distilled CPD (16 equiv. per tetrahedron) was added to 

a CD3CN solution of 3, leading to the clean formation of norbornene-grafted 4a, as confirmed by both ESI-

MS and 1H NMR analyses (Supplementary Figs 44 and 47). Slow vapour diffusion of iPr2O into a CD3CN 

solution of 4a containing KAsF6 (~100 equiv.) yielded single crystals suitable for X-ray diffraction, the 

analysis of which confirmed the T-symmetric framework of 4a in the solid state and that DA reactions had 



taken place with endo selectivity (Fig. 2c). Both complexes 3 and 4a contained a single encapsulated anion 

(PF6
− or AsF6

−) in the crystal structure, consistent with the behaviours of other tetrahedra constructed from 

dialdehyde B.36 In batches of tetrahedron 3 synthesized with 1.0 equiv. of NMe4PF6, the encapsulation of 

PF6
− in the solution phase was verified by 19F NMR (Supplementary Fig. 37). Samples of 4a derived from 

the PAM of such batches of 3 also exhibited PF6
− encapsulation in solution (Supplementary Fig. 46), 

confirming that PAM does not disrupt the guest binding behaviour of the tetrahedral framework. 

The full IEDDA-DA PAM cascade in this model system was initiated by the addition of NBD (30 equiv. 

per 1a) to a mixture of cube 1a and tetrahedron 3 in CD3CN at 293 K. In situ 1H NMR analysis of the 

reaction (Fig. 3a) showed that the IEDDA pathway proceeded rapidly upon addition of NBD to the system, 

resulting in a decrease in the signals corresponding to 1a and concomitant appearance of cube 2 and CPD. 

As the concentration of CPD grew, the secondary DA reaction proceeded, resulting in clean conversion of 

3 to 4a. The sharpness of the signals from 2 and 4a at the end of the reaction indicated the absence of ligand 

scrambling, further supporting our inference that the complexes remain intact during the PAM cascade. 

We note that CPD is a metastable intermediate and will dimerise in the absence of an alternative reactive 

partner. It is produced here only in a small quantity, akin to the transient nitric oxide signals employed by 

biological systems.5 It would not be straightforward to extract the CPD from a system containing only it 

and cube 2, and then use it to modify either aniline C pre-self-assembly or tetrahedron 3 post-self-assembly. 

This observation highlights a particularly useful feature of a cascade approach to PAM, since the in situ 

formation of CPD overcomes the challenges of synthesising and isolating alkyl-substituted CPDs (vide 

infra). As expected, when NBD was added to tetrahedron 3 in isolation, or CPD added to cube 1a in 

isolation, no reaction was observed due to the sequence dependence of the cascade. 



 

Figure 3 | Monitoring the model post-assembly modification cascade. 1H NMR (500 MHz, 298 K, 

CD3CN) spectra from in situ monitoring of the model cascade with CPD (carried out at 293 K) at various 

time points are shown. Signals are marked as follows: tetrazine cube 1a (solid blue squares), pyridazine 

cube 2 (hollow purple squares), maleimide tetrahedron 3 (solid red triangles), norbornene tetrahedron 4a 

(hollow orange triangles), NBD (grey stars), CPD (green circles). a. Spectrum before addition of NBD. b. 

Spectrum 30 min after NBD addition, with IEDDA step well underway. c. Spectrum 4 h after NBD 

addition, with IEEDA step largely complete and DA step well underway. d. Spectrum 22 h after NBD 

addition, with both steps complete.  

A hallmark of biological systems is their ability to respond to different signals in specific ways, with certain 

signals overriding others to inhibit a process. Cyclooctyne was shown to function as an inhibitor within the 

context of our PAM cascade system: when a solution of NBD (18 equiv. per cube) and cyclooctyne 

(12 equiv. per cube) was added to an equimolar mixture of cube 1a and tetrahedron 3 in CD3CN, the more 

reactive cyclooctyne underwent IEDDA preferentially with complex 1a, affording cyclooctylpyridazine-

edged complex 5 as the only observed product within minutes of addition (Fig. 4) (Supplementary Figs 58-

62). Because NBD was prevented from reacting with 1a, no relay CPD signal was produced, thus inhibiting 

the cascade and showing how a more reactive signal can override a less reactive one. 



 

Figure 4 | Monitoring the inhibited post-assembly modification cascade. 1H NMR (500 MHz, 298 K, 

CD3CN) spectra from in situ monitoring of the inhibited cascade (carried out at 293 K) at various time 

points are shown. Signals are marked as follows: tetrazine cube 1a (solid blue squares), pyridazine cube 5 

(hollow pink squares), maleimide tetrahedron 3 (red triangles), NBD (grey stars). a. Spectrum before 

addition of NBD/cyclooctyne. b. Spectrum 3 min after NBD/cyclooctyne addition c. Spectrum 8 min after 

NBD/cyclooctyne addition. 

To translate the effects of the microscopic PAM cascade to the macroscopic regime, we sought to couple 

PAM to a phase transition whereby tetrahedron 4 would be rendered sufficiently lipophilic to spontaneously 

move into a non-polar solvent upon completion of the cascade. Three NBDs of increasing alkyl chain length 

—2-hexyl-NBD (C6-NBD), 2-decyl-NBD (C10-NBD) and 2-octadecyl-NBD (C18-NBD)—were 

synthesized (Supplementary Fig. 64) as triggers for the cascade. The cascade reactions were performed in 

either CH3CN (for C6-NBD) or a 9:1 mixture of CH3CN:CHCl3 (for C6-NBD, C10-NBD and C18-NBD) as 

the polar ‘reaction’ phase, with the CHCl3 added to help solubilize the more lipophilic alkyl-NBDs. 

Cyclopentane was selected as the non-polar ‘destination’ phase for extracting the alkylated tetrahedra, 

because it is immiscible with the aforementioned polar phases and neither cage 1a nor 3 was observed to 

partition into cyclopentane from either CH3CN or 9:1 CH3CN/CHCl3. The cascade was initiated by the 

addition of the appropriate NBD to a mixture of 1a and 3 (see Methods). After the reaction was judged 

complete by 1H NMR analysis, an equal volume of cyclopentane was added, the mixture shaken in a vortex 

mixer to enable phase transfer; the phases were then separated by centrifugation.  

Addition of C6-NBD to the system of 1 and 3a in CD3CN (or in a 9:1 CD3CN/CDCl3 mixture) resulted in 

clean conversions after 20-24 h at 293 K to cube 2 and tetrahedron 4b respectively. The cyclopentane phase 

remained colourless following attempted extraction, however, indicating that tetrahedron 4b failed to 



partition into cyclopentane. With C10-NBD in 9:1 CD3CN/CDCl3, clean conversions to cube 2 and 

tetrahedron 4c were also observed by 1H NMR, but tetrahedron 4c also failed to partition into cyclopentane 

following attempted extraction. However, with C18-NBD in 9:1 CD3CN/CDCl3, clean conversions of 1 and 

3a to cube 2 and tetrahedron 4d were followed by successful extraction into cyclopentane, as evidenced by 

the deep purple colour of the cyclopentane layer (Fig. 5c).  

This coloured cyclopentane layer was decanted and a further extraction performed with fresh cyclopentane. 

The second cyclopentane extract was much paler in colour, indicating almost all tetrahedron 4d underwent 

phase transfer upon the first extraction. The cyclopentane was not noticeably coloured following attempted 

extraction for the third time. Analysis of the remaining CD3CN/CDCl3 layer from the cascade by 1H NMR 

showed exclusively the presence of cube 2 (Supplementary Fig. 87). The first two cyclopentane extracts 

were combined, concentrated and the residue dissolved in 1:1 CD3CN/CDCl3, whereby 1H NMR analysis 

revealed the presence of tetrahedron 4d only, confirming that this complex retained its structural integrity 

following successful transfer into a non-polar solvent phase. In cases where tetrahedron 3 contained 

encapsulated PF6
− prior to initiation of the reaction cascade, 19F NMR analysis of tetrahedron 4d isolated 

after this phase transition indicated PF6
− was still encapsulated (Supplementary Fig. 91). This experiment 

thus demonstrates the possibility of signal transduction in a synthetic system over large distances, whereby 

tetrahedron 4d crosses a macroscopic phase boundary with the cargo present in tetrahedron 3 before PAM 

also present in tetrahedron 4d after PAM and subsequent phase switching. 

  



 

Figure 5 | Signal transduction leading to phase segregation of the two product complexes. a. No 

transitioning of the starting complexes 1a and 3 to the non-polar phase occurred, rendering them inseparable 

before application of the NBD signal. b. The C6-NBD or C10-NBD signals did not render the tetrahedra 4b 

or 4c sufficiently lipophilic to induce transfer into a non-polar phase. c. The C18-NBD signal-induced 

transfer of tetrahedron 4d into a non-polar phase upon completion of the PAM cascade. 

Summary and Outlook 

Natural PTM cascade reactions underpin the ability of cells to dynamically regulate their activities in 

response to external stimuli. We propose that covalent PAM could serve an analogous role in 

supramolecular chemistry, enabling the construction of stimuli-responsive chemical systems37-39 that 

emulate the functional diversity of their biological counterparts. The two-step PAM cascade presented 

herein, for which the functional response is the transition of a large supramolecular structure across a phase 

boundary, demonstrates this proposition. This cascade system, which responds to a triggering signal (NBD), 

employs a relay shuttle (CPD) and can be interrupted by an inhibitor (cyclooctyne), functionally mirrors 

many of the key features of the complex signal transduction pathways of biology, but in an entirely 

abiological context. Such systems have clear potential to transport cargo across phase boundaries40 in 

response to chemical signals. Such a capability may be of use in designing new chemical separations41 

inspired by the scale42-45 and the structural46-48 and functional complexity49, 50 of natural signal transduction 

pathways.   



Methods 

Self-assembly of cube 1a 

A suspension of tetrazine dialdehyde A (13.8 mg, 47.1 µmol) and 4-tert-butylaniline (14.1 mg, 94.2 µmol) 

in dry CH3CN (2.4 mL) was deoxygenated by bubbling nitrogen gas through it for 15 min. Iron(II) 

bis(trifluoromethylsulfonyl)imide (22.1 mg, 31.4 µmol) was added, after which the solution turned dark 

blue-green. The resulting mixture was heated to 333 K for 16 h, then cooled to room temperature, filtered 

through a glass fibre filter (0.7 µm pore size) and then evaporated to dryness under a stream of nitrogen 

gas. The solid was redissolved in CH2Cl2/CH3CN (95:5) and purified by size exclusion chromatography 

(Biobeads SX-1), eluting with CH2Cl2/CH3CN (95:5). The main blue-green band was collected, the solvent 

removed under a stream of nitrogen gas to furnish cube 1a (41.9 mg, 3.61 µmol, 92%) as a fine dark-blue 

powder. 

Self-assembly of tetrahedron 3 

A suspension of dialdehyde B (10.8 mg, 50.9 µmol) and aniline C (22.0 mg, 102 µmol) in dry CH3CN 

(2.5 mL) was deoxygenated by bubbling nitrogen gas through it for 15 min. Iron(II) 

bis(trifluoromethylsulfonyl)imide (24.0 mg, 33.9 µmol) was added, after which the solution turned purple. 

The resulting mixture was heated at 333 K for 16 h, then cooled to room temperature, filtered through a 

glass fibre filter (0.7 µm pore size) and then evaporated to dryness under a stream of nitrogen gas. iPr2O 

(20 mL) was then added, the residue re-suspended and then centrifuged (5 min, 3000 rpm) and the iPr2O 

decanted. This procedure was repeated with fresh iPr2O. The residue was then dried in vacuo to furnish 

tetrahedron 3 (42.7 mg, 6.98 µmol, 82%) as a fine purple powder.  

Post-assembly modification cascade and subsequent phase separation 

A 2 mL microcentrifuge tube was charged with a solution of cube 1a (2.0 mg, 0.17 µmol, 1.1 equiv.) and 

tetrahedron 3 (1.0 mg, 0.16 µmol, 1.0 equiv.) in CD3CN (0.9 mL). A solution of C18-NBD (2.7 mg, 7.9 

µmol, 50 equiv.) in CDCl3 (0.1 mL) was added, the reaction mixture homogenized by vortex mixing for 

30 s, and the solution was transferred to an NMR tube for in situ 1H NMR monitoring. The reaction was 

performed at 293 K and reached completion after 22 h. The reaction mixture was transferred to a 2 mL 

microcentrifuge tube, cyclopentane (1 mL) was added, the mixture homogenized by vortex mixing for 30 s, 

and then the layers separated by centrifugation (9000 rpm, 30-60 sec). Partitioning of the alkylated 

tetrahedron 4d into the less dense cyclopentane layer was assessed by visual inspection, as evidenced by 

the characteristic purple colour of the cyclopentane layer (Supplementary Fig. 89). Tetrahedron 4d was 

extracted completely from the CD3CN/CDCl3 cascade medium by an additional 1 mL extraction into 

cyclopentane. Complete separation of cube 2 and tetrahedron 4d into polar and non-polar organic phases 

respectively, was verified by 1H NMR analysis of the isolated phases. 1H NMR samples were prepared by 

evaporating each isolated phase to dryness with a stream of nitrogen gas and then redissolving the residue 

in an appropriate solvent. The remnants of the more polar CD3CN/CDCl3 phase were redissolved in CD3CN 

which revealed the exclusive presence of cube 2. The remnants of what had transferred to the cyclopentane 

phase were redissolved in 1:1 CD3CN/CDCl3, which revealed the exclusive presence of tetrahedron 4d 

(Supplementary Fig. 87). 

Data Availability 

Crystallographic data for the structures reported in this paper have been deposited at the Cambridge 

Crystallographic Data Centre, under the deposition numbers 1520129-1520131. Copies of these data can 

be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif. All other data supporting the findings 



of this study are available within the Article and its Supplementary Information, or from the corresponding 

author upon reasonable request. 
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