7 research outputs found

    Characterization of white spot lesions formed on human enamel under microcosm biofilm for different experimental periods

    Get PDF
    The initial characteristics of white spot lesion (WSLs), such as the degree of integrated mineral loss (ΔZ), depth and pattern of mineral distribution, have an impact on further demineralization and remineralization. However, these lesion parameters have not been evaluated in WSLs produced from microcosm biofilms. Objective: This study characterized artificial white spot lesions produced on human enamel under microcosm biofilm for different experimental periods. Methodology: In total, 100 human enamel specimens (4x4mm) were assigned to 5 distinct groups (n=20/group) differing according to the period of biofilm formation (2, 4, 6, 8 or 10 days). Microcosm biofilm was produced on the specimens from a mixture of human and McBain saliva at the first 8h. Enamel samples were then exposed to McBain saliva containing 0.2% sucrose. WSLs formed were characterized by quantitative light-induced fluorescence (QLF) and transverse microradiography (TMR). Data were analyzed by ANOVA/Tukey or Kruskal-Wallis/Dunn tests (p<0.05). Results: A clear time-response pattern was observed for both analyses, but TMR was able to better discriminate among the lesions. Regarding QLF analysis, median (95%CI; %) changes in fluorescence ∆Z were -7.74(-7.74:-6.45)a, -8.52(-8.75:-8.00)ab, -9.17(-10.00:-8.71)bc, -9.58(-10.53:-8.99)bc and -10.01(-11.44:-9.72)c for 2, 4, 6, 8, and 10 days, respectively. For TMR, median (95%CI; vol%.µm) ∆Z were 1410(1299-1479)a, 2420(2327-2604)ab, 2775(2573-2899)bc, 3305(3192-3406)cd and 4330(3972-4465)d, whereas mean (SD; µm) lesion depth were 53.7(12.3)a, 71.4(12.0)a, 103.8(24.8)b, 130.5(27.2)bc, 167.2(39.3)c for 2, 4, 6, 8 and 10 days, respectively. Conclusion: The progression of WSLs formed on human enamel under microcosm biofilm can be characterized over 2-10 days, both by QLF and TMR analyses, although the latter provides better discrimination among the lesions

    Enhanced teeth whitening by nanofluidic transport of hydrogen peroxide into enamel with electrokinetic flows

    No full text
    Tooth whitening, a routine procedure in dentistry, is one of the examples of medical procedures that are limited by the challenge of delivering molecules into various types of nanoporous tissues. Current bleaching methods rely on simple diffusion of peroxides into enamel nano channels, therefore requires sufficient contact time with peroxides. In-office treatments often involve enamel etching or light activation which often results in patient sensitivity and potential soft tissue damage. Objective: To demonstrate a robust method to transport hydrogen peroxide to greater depths into enamel nanopores through nanofluidic flows driven by electrokinetics, with the intention to increase efficacy while reducing treatment time. Methods: Freshly extracted human teeth were subjected to electrokinetic flow treatment with hydrogen peroxide under different electric fields with varying operation times. Pre- and post-operative shade matching was done using a photospectrometer. Results: It is demonstrated that the operation time for the same concentration of hydrogen peroxide can be shortened by 10 times. The proposed method showed significant improvements in whitening effects over control groups and thus offers promising clinically-viable chairside applications with efficacy. Significance: The demonstrated nanofluidic transport of hydrogen peroxide into enamel has a potential to be applied for enhancing tooth whitening, compared to simple diffusion, without heating the hard dental tissues

    An imaging-based approach to the evaluation of xerostomia.

    No full text
    Background and objectiveGoal was to evaluate the potential of in vivo optical coherence tomography (OCT) imaging to determine the response of patients with xerostomia to a dry mouth toothpaste versus fluoride toothpaste placebo.Study design/materials and methodsTen subjects with xerostomia participated in this double-blind, crossover, placebo-controlled study. After examination and OCT imaging, subjects used the first product for 15 days, followed by a 7-day washout period, and then they used the second product for 15 days. Data were acquired at 5-day intervals, also before and after the washout.ResultsVisual examination and tongue blade adhesion test did not reflect response to the product. Two imaging-based markers were identified: (i) In OCT images, epithelial thickness increased significantly (P < 0.05) after use of the dry mouth toothpaste, but did not change significantly (P > 0.05) after the use of a fluoride toothpaste and (2) Optical backscattering data showed progressive characteristic changes from baseline with use of the active product.ConclusionsIn this pilot study using in vivo OCT imaging, it was possible to detect and measure oral epithelial response to the dry mouth product versus placebo in patients with xerostomia.Clinical implicationsThis approach may permit site-specific assessment of xerostomia, individualized treatment planning and monitoring, and sequential mucosal mapping in patients with dry mouth

    Improved mineralization of dental enamel by electrokinetic delivery of F− and Ca2+ ions

    No full text
    Abstract This in vitro study evaluated the effects of the infiltration of F- and Ca2+ ions into human enamel by electrokinetic flow (EKF) on the enamel microhardness and F- content. Sound human enamel ground sections of unerupted third molars were infiltrated with de-ionized water by EKF and with F- ion by EKF respectively. All samples were submitted to two successive transverse acid-etch biopsies (etching times of 30 s and 20 min) to quantify F- ion infiltrated deep into enamel. Remarkably, sound enamel showed a large increase in microhardness (MH) after infiltration of NaF (p < 0.00001) and CaCl2 (p = 0.013) by EKF. Additionally, NaF-EKF increased the remineralization in the lesion body of artificial enamel caries lesions compared to controls (p < 0.01). With the enamel biopsy technique, at both etching times, more F- ions were found in the EKF-treated group than the control group (p << 0.05), and more fluoride was extracted from deeper biopsies in the NaF-EKF group. In conclusion, our results show that EKF treatment is superior in transporting Ca2+ and F− ions into sound enamel when compared to molecular diffusion, enhancing both the mineralization of sound enamel and the remineralization of artificial enamel caries

    Ex vivo study of molecular changes of stained teeth following hydrogen peroxide and peroxymonosulfate treatments

    No full text
    Abstract White teeth can give confidence and tend to be associated with a healthier lifestyle in modern society. Therefore, tooth-bleaching strategies have been developed, including the use of hydrogen peroxide. Recently, peroxymonosulfate has been introduced as an alternative bleaching method to hydrogen peroxide. Although both chemicals are oxidizing agents, their effects on the molecular composition of the stained teeth are yet unknown. In this study, the molecular profiles of teeth bleached with hydrogen peroxide and peroxymonosulfate were compared using Liquid Chromatography-Tandem Mass Spectrometry. Statistical analyses were used to assess the samples. In addition, reference spectral libraries and in silico tools were used to perform metabolite annotation. Overall, principal component analysis showed a strong separation between control and hydrogen peroxide and peroxymonosulfate samples (p < 0.001). The analysis of molecular changes revealed amino acids and dipeptides in stained teeth samples after hydrogen peroxide and peroxymonosulfate treatments. Noteworthy, the two bleaching methods led to distinct molecular profiles. For example, diterpenoids were more prevalent after peroxymonosulfate treatment, while a greater abundance of alkaloids was detected after hydrogen peroxide treatment. Whereas non-bleached samples (controls) showed mainly lipids. Therefore, this study shows how two different tooth-whitening peroxides could affect the molecular profiles of human teeth
    corecore