20 research outputs found

    Evaluation of bioluminescent imaging for noninvasive monitoring of colorectal cancer progression in the liver and its response to immunogene therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bioluminescent imaging (BLI) is based on the detection of light emitted by living cells expressing a luciferase gene. Stable transfection of luciferase in cancer cells and their inoculation into permissive animals allows the noninvasive monitorization of tumor progression inside internal organs. We have applied this technology for the development of a murine model of colorectal cancer involving the liver, with the aim of improving the pre-clinical evaluation of new anticancer therapies.</p> <p>Results</p> <p>A murine colon cancer cell line stably transfected with the luciferase gene (MC38Luc1) retains tumorigenicity in immunocompetent C57BL/6 animals. Intrahepatic inoculation of MC38Luc1 causes progressive liver infiltration that can be monitored by BLI. Compared with ultrasonography (US), BLI is more sensitive, but accurate estimation of tumor mass is impaired in advanced stages. We applied BLI to evaluate the efficacy of an immunogene therapy approach based on the liver-specific expression of the proinflammatory cytokine interleukin-12 (IL-12). Individualized quantification of light emission was able to determine the extent and duration of antitumor responses and to predict long-term disease-free survival.</p> <p>Conclusion</p> <p>We show that BLI is a rapid, convenient and safe technique for the individual monitorization of tumor progression in the liver. Evaluation of experimental treatments with complex mechanisms of action such as immunotherapy is possible using this technology.</p

    Increased efficacy and safety in the treatment of experimental liver cancer with a novel adenovirus-alphavirus hybrid vector

    Get PDF
    An improved viral vector for cancer gene therapy should be capable of infecting tumors with high efficiency, inducing specific and high-level expression of transgene in the tumor and selectively destroying tumor cells. In the design of such a vector to treat hepatocellular carcinoma, we took advantage of (a) the high infectivity of adenoviruses for hepatic cells, (b) the high level of protein expression and proapoptotic properties that characterize Semliki Forest virus (SFV) replicon, and (c) tumor selectivity provided by alpha-fetoprotein (AFP) promoter. We constructed a hybrid viral vector composed of a helper-dependent adenovirus containing an SFV replicon under the transcriptional control of AFP promoter and a transgene driven by SFV subgenomic promoter. Hybrid vectors containing murine interleukin-12 (mIL-12) genes or reporter gene LacZ showed very specific and high-level expression of transgenes in AFP-expressing hepatocellular carcinoma cells, both in vitro and in an in vivo hepatocellular carcinoma animal model. Infected hepatocellular carcinoma cells were selectively eliminated due to the induction of apoptosis by SFV replication. In a rat orthotopic liver tumor model, treatment of established tumors with a hybrid vector carrying mIL-12 gene resulted in strong antitumoral activity without accompanying toxicity. This new type of hybrid vectors may provide a potent and safe tool for cancer gene therapy

    Oxaliplatin in combination with liver-specific expression of interleukin 12 reduces the immunosuppressive microenvironment of tumours and eradicates metastatic colorectal cancer in mice

    Get PDF
    BACKGROUND AND AIMS: New options are needed for the management and prevention of colorectal cancer liver metastases. Interleukin 12 (IL-12) is an immunostimulatory cytokine with proven antitumour effect in animal models. Despite evidence indicating its biological effect in humans, neither the recombinant protein nor gene therapy vectors expressing IL-12 have shown a relevant benefit in patients with cancer. OBJECTIVE: To develop a new approach to overcome the difficulties in obtaining a suitable expression pattern and the immunosuppressive milieu in the tumours which contribute to this poor performance. METHODS: A high-capacity ('gutless') adenoviral vector carrying a liver-specific, mifepristone (Mif)-inducible system for the expression of IL-12 (HC-Ad/RUmIL-12) was used in combination with chemotherapy. Tumours were established in the liver of C57BL/6 mice by inoculation of MC38 colon cancer cells. RESULTS: Intrahepatic injection of HC-Ad/RUmIL-12 and tailored induction regimens allowed the maintenance of safe and efficient levels of IL-12 in vivo. An individualised, stepwise increase in the dose of Mif (125-4000 ÎĽg/kg) was needed to compensate for the progressive but transient downregulation of the inducible system. Repeated cycles of Mif induction (every 24 h for 10 days) were needed for optimal tumour eradication. However, complete protection against tumour rechallenge was seen in < 25% of the animals. The administration of oxaliplatin (5 mg/kg intraperitoneally) 3 days before starting the induction regimen achieved efficient elimination of liver metastases with a single cycle of IL-12 induction, and improved protection against tumour rechallenge. This was associated with a shift in the tumour microenvironment towards a more pro-immunogenic phenotype, with an increase in the CD8+/T regulatory cell ratio and a reduction in myeloid-derived suppressor cells. These effects were not seen with 5-fluorouracil, irinotecan or gemcitabine

    Trauma surgical simulation: discussing the replacement of live animals used as human patient simulators

    No full text
    Abstract Background Despite advances in simulator technology, live anaesthetised animals continue to be used as human patient simulators for medical professionals to practice techniques in the management of surgical trauma. This article describes the process of convening a working group of individuals with a professional interest in simulation to discuss the use of live animals and consider if and how they can be replaced in the future. Main body A working group was formed of voluntary attendees to a workshop held at the SESAM 2023 conference. Iterative discussions reflecting on the topic were used to produce statements summarising the working group’s opinions. The working group determined that live animals are used as human patient simulators due to the presence of accurate and responsive physiology in the presence of bleeding, realistic tissue tactility and an emotional response experienced by the learner due to interaction with the animal. They were unable to reach a consensus on replacement, determining that there is currently no single model which is able to provide all the learning aspects which a live animal model can provide. Several suggestions were made regarding development of technologies and pedagogical change. Conclusion Replacement of live animals in surgical simulation is not straightforward but should be an aspiration, if possible. For the ongoing development of trauma surgical simulation models, it is important to combine the knowledge, skills and perspectives of medical stakeholders and educators, academic researchers and industry experts in producing alternative options to the use of live animal simulators

    Liver Damage using Suicide Genes : A Model for Oval Cell Activation

    Get PDF
    Liver regeneration from the facultative hepatic stem cells, the oval cells, takes place in situations in which liver regeneration from pre-existing hepatocytes is prevented. Different models have been used to stimulate oval cell response. Many of them involve the use of carcinogenic agents with or without partial hepatectomy. In this study we show that adenovirus-mediated gene transfer of the suicide gene thymidine kinase followed by ganciclovir administration caused hepatotoxicity of variable intensity. Rats with moderate elevation in serum transaminases recovered normal liver architecture few weeks after adenovirus injection. In contrast, rats with severe liver damage exhibited a marked and persisting activation of oval cells accompanied by ductular hyperplasia. In some rats, such lesion eventually evolved to cholangiofibrosis and in one rat to cholangiocarcinoma. Deposition of fibronectin and increased number of hepatic stellate cells were found in association with oval cells and cholangiofibrotic lesions. Hepatocyte growth factor was hyperexpressed in the livers with intense oval cell response or ductular proliferation, suggesting a participation of this factor in those lesions. In summary, our data demonstrate activation of oval cell response after gene transfer of thymidine kinase followed by ganciclovir administration. These findings indicate that high doses of this therapy causes liver damage together with an impairment in hepatocellular regeneration

    Relative Fundamental Frequency: Only for Hyperfunctional Voices? A Pilot Study

    No full text
    (1) Background: Assessing phonatory disorders due to laryngeal biomechanical alterations requires aerodynamic analysis, assessing subglottic pressure, transglottic flow, and laryngeal resistance. This study explores whether the acoustic parameter, the relative fundamental frequency (RFF), can be studied using the current acoustic analysis protocol at the University of Navarra’s voice laboratory and its association with pathologies linked to laryngeal biomechanical alterations. (2) Methods: A retrospective cohort study included patients diagnosed with muscular tension dysphonia, organic lesions of the vocal fold, and vocal fold paralysis (VFP) at the Clínica Universidad de Navarra from 2019 to 2021. Each patient underwent endoscopic laryngeal exploration, followed by acoustic study, RFF calculation, and an aerodynamic study. Additionally, a control group was recruited. (3) Results: 79 patients and 22 controls were studied. Two-way ANOVA showed significant effects for groups and cycles in offset and onset cycles. Statistically significant differences were observed in cycle 1 onset among all groups and in cycles 1 and 2 between the control group and non-healthy groups. (4) Conclusions: RFF is a valuable indicator of phonatory biomechanics, distinguishing healthy and pathological voices and different disorders. RFF in onset cycles offers a cost-effective, accurate method for assessing biomechanical disorders without complex aerodynamic analyses. This study describes RFF values in VFP for the first time, revealing differences regardless of aerodynamic patterns
    corecore