16 research outputs found

    Wideband Measurement in a Small Shielded Box Using Equiangular Spiral Antennas

    Get PDF
    Small shielded boxes are nowadays widely used for measurement of EMS, EMI and sensitivity properties of different devices. This paper deals with an improvement of commercial small shielded box parameters for a measurement of sensitivity of small mobile devices in 650 MHz to 4 GHz frequency band. Optimization of shielded box parameters is obtained by an inner area modification. Suitable wideband equiangular spiral antenna was designed for this measurement. Parameters of antenna inside the box, such as gain, impedance, directivity etc. are discussed in the paper. Effects of antenna positions in the box for a transmission are shown and the best configuration of antennas placing for the transmission in the shielded box is chosen

    A Study of Gas and Rain Propagation Effects at 48 GHz for HAP Scenarios

    No full text
    Abstract The atmosphere and rainfall significantly limit the performance of millimeter wave links and this has to be taken into account, particularly, during planning of high altitude platform (HAP) networks. This paper presents results from the measurement and simulation of these phenomena. A simulation tool from our previous analyses of terrestrial point-to-multipoint systems has been modified for HAP systems. Based on a rainfall radar database and gas attenuation characteristics as measured by a Fabry-Perot resonator, the performance of a simple link, two-branch diversity links, and more complicated HAP scenarios are discussed.</p

    Porphyrin-Loaded Lignin Nanoparticles Against Bacteria: A Photodynamic Antimicrobial Chemotherapy Application

    No full text
    The need for alternative strategies to fight bacteria is evident from the emergence of antimicrobial resistance. To that respect, photodynamic antimicrobial chemotherapy steadily rises in bacterial eradication by using light, a photosensitizer and oxygen, which generates reactive oxygen species that may kill bacteria. Herein, we report the encapsulation of 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphyrin into acetylated lignin water-dispersible nanoparticles (THPP@AcLi), with characterization of those systems by standard spectroscopic and microscopic techniques. We observed that THPP@AcLi retained porphyrin's photophysical/photochemical properties, including singlet oxygen generation and fluorescence. Besides, the nanoparticles demonstrated enhanced stability on storage and light bleaching. THPP@AcLi were evaluated as photosensitizers against two Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, and against three Gram-positive bacteria, Staphylococcus aureus, Staphylococcus epidermidis, and Enterococcus faecalis. THPP@AcLi were able to diminish Gram-positive bacterial survival to 0.1% when exposed to low white LED light doses (4.16 J/cm2), requiring concentrations below 5 μM. Nevertheless, the obtained nanoparticles were unable to diminish the survival of Gram-negative bacteria. Through transmission electron microscopy observations, we could demonstrate that nanoparticles did not penetrate inside the bacterial cell, exerting their destructive effect on the bacterial wall; also, a high affinity between acetylated lignin nanoparticles and bacteria was observed, leading to bacterial flocculation. Altogether, these findings allow to establish a photodynamic antimicrobial chemotherapy alternative that can be used effectively against Gram-positive topic infections using the widely available natural polymeric lignin as a drug carrier. Further research, aimed to inhibit the growth and survival of Gram-negative bacteria, is likely to enhance the wideness of acetylated lignin nanoparticle applications
    corecore