4 research outputs found

    Wavelength-Dependent Extinction and Grain Sizes in Dippers

    Full text link
    We have examined inter-night variability of K2-discovered Dippers that are not close to being viewed edge-on, as determined from previously-reported ALMA images, using the SpeX spectrograph and the NASA Infrared Telescope facility (IRTF). The three objects observed were EPIC 203850058, EPIC 205151387, and EPIC 204638512 (2MASS J16042165-2130284). Using the ratio of the fluxes between two successive nights, we find that for EPIC 204638512 and EPIC 205151387, we find that the properties of the dust differ from that seen in the diffuse interstellar medium and denser molecular clouds. However, the grain properties needed to explain the extinction does resemble those used to model the disks of many young stellar objects. The wavelength-dependent extinction models of both EPIC 204638512 and EPIC 205151387 includes grains at least 500 microns in size, but lacks grains smaller than 0.25 microns. The change in extinction during the dips, and the timescale for these variations to occur, imply obscuration by the surface layers of the inner disks. The recent discovery of a highly mis-inclined inner disk in EPIC 204638512 is suggests that the variations in this disk system may point to due to rapid changes in obscuration by the surface layers of its inner disk, and that other face-on Dippers might have similar geometries. The He I line at 1.083 microns in EPIC 205151387 and EPIC 20463851 were seen to change from night to night, suggesting that we are seeing He I gas mixed in with the surface dust.Comment: 13 pages, 6 figures, 2 table

    Variability of Disk Emission in Pre-Main Sequence and Related Stars IV. Investigating the Structural Changes in the Inner Disk Region of MWC 480

    Full text link
    We present five epochs of near IR observations of the protoplanetary disk around MWC 480 (HD31648) obtained with the SpeX spectrograph on NASA's Infrared Telescope Facility (IRTF) between 2007 and 2013, inclusive. Using the measured line fluxes in the Pa beta and Br gamma lines, we found the mass accretion rates to be (1.43 - 2.61)x10^-8 Msun y^-1 and (1.81 - 2.41)x10^-8 Msun y^-1 respectively, but which varied by more than 50% from epoch to epoch. The spectral energy distribution (SED)reveals a variability of about 30% between 1.5 and 10 microns during this same period of time. We investigated the variability using of the continuum emission of the disk in using the Monte-Carlo Radiative Transfer Code (MCRT) HOCHUNK3D. We find that varying the height of the inner rim successfully produces a change in the NIR flux, but lowers the far IR emission to levels below all measured fluxes. Because the star exhibits bipolar flows, we utilized a structure that simulates an inner disk wind to model the variability in the near IR, without producing flux levels in the far IR that are inconsistent with existing data. For this object, variable near IR emission due to such an outflow is more consistent with the data than changing the scale height of the inner rim of the disk.Comment: 19 pages, 14 figure

    Wavelength-dependent Extinction and Grain Sizes in “Dippers”

    No full text
    We have examined internight variability of K2-discovered “dippers” that are not close to being viewed edge-on, as determined from previously reported ALMA images, using the SpeX spectrograph on NASA’s Infrared Telescope Facility. The three objects observed were EPIC 203850058, EPIC 205151387, and EPIC 204638512 (=2MASS J16042165-2130284). Using the ratio of the fluxes between two successive nights, we find that for EPIC 204638512 and EPIC 205151387, we find that the properties of the dust differ from that seen in the diffuse interstellar medium and denser molecular clouds. However, the grain properties needed to explain the extinction does resemble those used to model the disks of many young stellar objects. The wavelength-dependent extinction models of both EPIC 204638512 and EPIC 205151387 includes grains at least 500 μ m in size, but lacks grains smaller than 0.25 μ m. The change in extinction during the dips, and the timescale for these variations to occur, imply obscuration by the surface layers of the inner disks. The recent discovery of a highly misinclined inner disk in EPIC 204638512 is suggests that the variations in this disk system may point to due to rapid changes in obscuration by the surface layers of its inner disk, and that other “face-on” dippers might have similar geometries. The He i line at 1.083 μ m in EPIC 205151387 and EPIC 20463851 were seen to change from night to night, suggesting that we are seeing He i gas mixed in with the surface dust
    corecore