48 research outputs found

    Logarithmically Slow Expansion of Hot Bubbles in Gases

    Full text link
    We report logarithmically slow expansion of hot bubbles in gases in the process of cooling. A model problem first solved, when the temperature has compact support. Then temperature profile decaying exponentially at large distances is considered. The periphery of the bubble is shown to remain essentially static ("glassy") in the process of cooling until it is taken over by a logarithmically slowly expanding "core". An analytical solution to the problem is obtained by matched asymptotic expansion. This problem gives an example of how logarithmic corrections enter dynamic scaling.Comment: 4 pages, 1 figur

    Thermal Instability-Induced Interstellar Turbulence

    Full text link
    We study the dynamics of phase transitions in the interstellar medium by means of three-dimensional hydrodynamic numerical simulations. We use a realistic cooling function and generic nonequilibrium initial conditions to follow the formation history of a multiphase medium in detail in the absence of gravity. We outline a number of qualitatively distinct stages of this process, including a linear isobaric evolution, transition to an isochoric regime, formation of filaments and voids (also known as "thermal" pancakes), the development and decay of supersonic turbulence, an approach to pressure equilibrium, and final relaxation of the multiphase medium. We find that 1%-2% of the initial thermal energy is converted into gas motions in one cooling time. The velocity field then randomizes into turbulence that decays on a dynamical timescale E_k ~ t^-n, 1 < n < 2. While not all initial conditions yield a stable two-phase medium, we examine such a case in detail. We find that the two phases are well mixed with the cold clouds possessing a fine-grained structure near our numerical resolution limit. The amount of gas in the intermediate unstable phase roughly tracks the rms turbulent Mach number, peaking at 25% when M_rms ~ 8, decreasing to 11% when M_rms ~ 0.4.Comment: To appear in the ApJ Letters, April 2002; 5 pages, 3 color figures, mpeg animations available at http://akpc.ucsd.edu/ThermalLetter/thermal.htm

    Superbubble evolution including the star-forming clouds: Is it possible to reconcile LMC observations with model predictions?

    Get PDF
    Here we present a possible solution to the apparent discrepancy between the observed properties of LMC bubbles and the standard, constant density bubble model. A two-dimensional model of a wind-driven bubble expanding from a flattened giant molecular cloud is examined. We conclude that the expansion velocities derived from spherically symmetric models are not always applicable to elongated young bubbles seen almost face-on due to the LMC orientation. In addition, an observational test to differentiate between spherical and elongated bubbles seen face-on is discussed.Comment: 25 pages, 7 figures, accepted to ApJ (September, 1999 issue

    Ten Million Degree Gas in M 17 and the Rosette Nebula: X-ray Flows in Galactic H II Regions

    Full text link
    We present the first high-spatial-resolution X-ray images of two high-mass star forming regions, the Omega Nebula (M 17) and the Rosette Nebula (NGC 2237--2246), obtained with the Chandra X-ray Observatory Advanced CCD Imaging Spectrometer (ACIS) instrument. The massive clusters powering these H II regions are resolved at the arcsecond level into >900 (M 17) and >300 (Rosette) stellar sources similar to those seen in closer young stellar clusters. However, we also detect soft diffuse X-ray emission on parsec scales that is spatially and spectrally distinct from the point source population. The diffuse emission has luminosity L_x ~ 3.4e33 ergs/s in M~17 with plasma energy components at kT ~0.13 and ~0.6 keV (1.5 and 7 MK), while in Rosette it has L_x \~6e32 ergs/s with plasma energy components at kT ~0.06 and ~0.8 keV (0.7 and 9 MK). This extended emission most likely arises from the fast O-star winds thermalized either by wind-wind collisions or by a termination shock against the surrounding media. We establish that only a small portion of the wind energy and mass appears in the observed diffuse X-ray plasma; in these blister H II regions, we suspect that most of it flows without cooling into the low-density interstellar medium. These data provide compelling observational evidence that strong wind shocks are present in H II regions.Comment: 35 pages, including 11 figures; to appear in ApJ, August 20, 2003. A version with high-resolution figures is available at ftp://ftp.astro.psu.edu/pub/townsley/diffuse.ps.g

    Dynamic Evolution Model of Isothermal Voids and Shocks

    Full text link
    We explore self-similar hydrodynamic evolution of central voids embedded in an isothermal gas of spherical symmetry under the self-gravity. More specifically, we study voids expanding at constant radial speeds in an isothermal gas and construct all types of possible void solutions without or with shocks in surrounding envelopes. We examine properties of void boundaries and outer envelopes. Voids without shocks are all bounded by overdense shells and either inflows or outflows in the outer envelope may occur. These solutions, referred to as type X\mathcal{X} void solutions, are further divided into subtypes XI\mathcal{X}_{\rm I} and XII\mathcal{X}_{\rm II} according to their characteristic behaviours across the sonic critical line (SCL). Void solutions with shocks in envelopes are referred to as type Z\mathcal{Z} voids and can have both dense and quasi-smooth edges. Asymptotically, outflows, breezes, inflows, accretions and static outer envelopes may all surround such type Z\mathcal{Z} voids. Both cases of constant and varying temperatures across isothermal shock fronts are analyzed; they are referred to as types ZI\mathcal{Z}_{\rm I} and ZII\mathcal{Z}_{\rm II} void shock solutions. We apply the `phase net matching procedure' to construct various self-similar void solutions. We also present analysis on void generation mechanisms and describe several astrophysical applications. By including self-gravity, gas pressure and shocks, our isothermal self-similar void (ISSV) model is adaptable to various astrophysical systems such as planetary nebulae, hot bubbles and superbubbles in the interstellar medium as well as supernova remnants.Comment: 24 pages, 13 figuers, accepted by ApS

    Formation of Multiple Populations in Globular Clusters: Another Possible Scenario

    Full text link
    While chemical composition spreads are now believed to be a universal characteristic of globular clusters (GCs), not all of them present multiple populations in their color-magnitude diagrams (CMDs). Here we present a new scenario for the formation of GCs, in an attempt to qualitatively explain this otherwise intriguing observational framework. Our scenario divides GCs into three groups, depending on the initial mass (M_I) of the progenitor structure (PS), as follows. i) Massive PSs can retain the gas ejected by massive stars, including the ejecta of core-collapse SNe. ii) Intermediate-mass PSs can retain at least a fraction of the fast winds of massive stars, but none of the core-collapse SNe ejecta. iii) Low-mass PSs can only retain the slow winds of intermediate-mass stars. Members of the first group would include omega Centauri (NGC 5139), M54 (NGC 6715), M22 (NGC 6656), and Terzan 5, whereas NGC 2808 (and possibly NGC 2419) would be members of the second group. The remaining GCs which only present a spread in light elements, such as O and Na, would be members of the third group. According to our scenario, the different components in omega Cen should not display a sizeable spread in age. We argue that this is consistent with the available observations. We give other simple arguments in favor of our scenario, which can be described in terms of two main analytical relations: i) Between the actual observed ratio between first and second generation stars (R_SG^FG) and the fraction of first generation stars that have been lost by the GC (S_L); and ii) Between S_L and M_I. We also suggest a series of future improvements and empirical tests that may help decide whether the proposed scenario properly describes the chemical evolution of GCs.Comment: Accepted for publication in Astronomy and Astrophysic

    Physics of Solar Prominences: II - Magnetic Structure and Dynamics

    Full text link
    Observations and models of solar prominences are reviewed. We focus on non-eruptive prominences, and describe recent progress in four areas of prominence research: (1) magnetic structure deduced from observations and models, (2) the dynamics of prominence plasmas (formation and flows), (3) Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and large-scale patterns of the filament channels in which prominences are located. Finally, several outstanding issues in prominence research are discussed, along with observations and models required to resolve them.Comment: 75 pages, 31 pictures, review pape

    Control of star formation by supersonic turbulence

    Full text link
    Understanding the formation of stars in galaxies is central to much of modern astrophysics. For several decades it has been thought that stellar birth is primarily controlled by the interplay between gravity and magnetostatic support, modulated by ambipolar diffusion. Recently, however, both observational and numerical work has begun to suggest that support by supersonic turbulence rather than magnetic fields controls star formation. In this review we outline a new theory of star formation relying on the control by turbulence. We demonstrate that although supersonic turbulence can provide global support, it nevertheless produces density enhancements that allow local collapse. Inefficient, isolated star formation is a hallmark of turbulent support, while efficient, clustered star formation occurs in its absence. The consequences of this theory are then explored for both local star formation and galactic scale star formation. (ABSTRACT ABBREVIATED)Comment: Invited review for "Reviews of Modern Physics", 87 pages including 28 figures, in pres

    Wind-Blown Bubbles around Evolved Stars

    Get PDF
    Most stars will experience episodes of substantial mass loss at some point in their lives. For very massive stars, mass loss dominates their evolution, although the mass loss rates are not known exactly, particularly once the star has left the main sequence. Direct observations of the stellar winds of massive stars can give information on the current mass-loss rates, while studies of the ring nebulae and HI shells that surround many Wolf-Rayet (WR) and luminous blue variable (LBV) stars provide information on the previous mass-loss history. The evolution of the most massive stars, (M > 25 solar masses), essentially follows the sequence O star to LBV or red supergiant (RSG) to WR star to supernova. For stars of mass less than 25 solar masses there is no final WR stage. During the main sequence and WR stages, the mass loss takes the form of highly supersonic stellar winds, which blow bubbles in the interstellar and circumstellar medium. In this way, the mechanical luminosity of the stellar wind is converted into kinetic energy of the swept-up ambient material, which is important for the dynamics of the interstellar medium. In this review article, analytic and numerical models are used to describe the hydrodynamics and energetics of wind-blown bubbles. A brief review of observations of bubbles is given, and the degree to which theory is supported by observations is discussed.Comment: To be published as a chapter in 'Diffuse Matter from Star Forming Regions to Active Galaxies' - A volume Honouring John Dyson. Eds. T. W. Harquist, J. M. Pittard and S. A. E. G. Falle. 22 pages, 12 figure

    Limb Spicules from the Ground and from Space

    Get PDF
    We amassed statistics for quiet-sun chromosphere spicules at the limb using ground-based observations from the Swedish 1-m Solar Telescope on La Palma and simultaneously from NASA's Transition Region and Coronal Explorer (TRACE) spacecraft. The observations were obtained in July 2006. With the 0.2 arcsecond resolution obtained after maximizing the ground-based resolution with the Multi-Object Multi-Frame Blind Deconvolution (MOMFBD) program, we obtained specific statistics for sizes and motions of over two dozen individual spicules, based on movies compiled at 50-second cadence for the series of five wavelengths observed in a very narrow band at H-alpha, on-band and in the red and blue wings at 0.035 nm and 0.070 nm (10 s at each wavelength) using the SOUP filter, and had simultaneous observations in the 160 nm EUV continuum from TRACE. The MOMFBD restoration also automatically aligned the images, facilitating the making of Dopplergrams at each off-band pair. We studied 40 H-alpha spicules, and 14 EUV spicules that overlapped H-alpha spicules; we found that their dynamical and morphological properties fit into the framework of several previous studies. From a preliminary comparison with spicule theories, our observations are consistent with a reconnection mechanism for spicule generation, and with UV spicules being a sheath region surrounding the H-alpha spicules
    corecore