264 research outputs found

    Using twins to better understand sibling relationships

    Get PDF
    We compared the nature of the sibling relationship in dyads of varying genetic relatedness, employing a behavioural genetic design to estimate the contribution that genes and the environment have on this familial bond. Two samples were used—the Sisters and Brothers Study consisted of 173 families with two target non-twin children (mean ages = 7.42 and 5.22 years respectively); and the Twins, Family and Behaviour study included 234 families with two target twin children (mean age = 4.70 years). Mothers and fathers reported on their children’s relationship with each other, via a postal questionnaire (the Sisters and Brothers Study) or a telephone interview (the Twins, Family and Behaviour study). Contrary to expectations, no mean level differences emerged when monozygotic twin pairs, dizygotic twin pairs, and non-twin pairs were compared on their sibling relationship quality. Behavioural genetic analyses also revealed that the sibling bond was modestly to moderately influenced by the genetic propensities of the children within the dyad, and moderately to substantially influenced by the shared environment common to both siblings. In addition, for sibling negativity, we found evidence of twin-specific environmental influence—dizygotic twins showed more reciprocity than did non-twins. Our findings have repercussions for the broader application of results from future twin-based investigations

    Variational Methods for Biomolecular Modeling

    Full text link
    Structure, function and dynamics of many biomolecular systems can be characterized by the energetic variational principle and the corresponding systems of partial differential equations (PDEs). This principle allows us to focus on the identification of essential energetic components, the optimal parametrization of energies, and the efficient computational implementation of energy variation or minimization. Given the fact that complex biomolecular systems are structurally non-uniform and their interactions occur through contact interfaces, their free energies are associated with various interfaces as well, such as solute-solvent interface, molecular binding interface, lipid domain interface, and membrane surfaces. This fact motivates the inclusion of interface geometry, particular its curvatures, to the parametrization of free energies. Applications of such interface geometry based energetic variational principles are illustrated through three concrete topics: the multiscale modeling of biomolecular electrostatics and solvation that includes the curvature energy of the molecular surface, the formation of microdomains on lipid membrane due to the geometric and molecular mechanics at the lipid interface, and the mean curvature driven protein localization on membrane surfaces. By further implicitly representing the interface using a phase field function over the entire domain, one can simulate the dynamics of the interface and the corresponding energy variation by evolving the phase field function, achieving significant reduction of the number of degrees of freedom and computational complexity. Strategies for improving the efficiency of computational implementations and for extending applications to coarse-graining or multiscale molecular simulations are outlined.Comment: 36 page

    Maternal condition but not corticosterone is linked to brood sex ratio adjustment in a passerine bird

    Get PDF
    There is evidence of offspring sex ratio adjustment in a range of species, but the potential mechanisms remain largely unknown. Elevated maternal corticosterone (CORT) is associated with factors that can favour brood sex ratio adjustment, such as reduced maternal condition, food availability and partner attractiveness. Therefore, the steroid hormone has been suggested to play a key role in sex ratio manipulation. However, despite correlative and causal evidence CORT is linked to sex ratio manipulation in some avian species, the timing of adjustment varies between studies. Consequently, whether CORT is consistently involved in sex-ratio adjustment, and how the hormone acts as a mechanism for this adjustment remains unclear. Here we measured maternal baseline CORT and body condition in free-living blue tits (Cyanistes caeruleus) over three years and related these factors to brood sex ratio and nestling quality. In addition, a non-invasive technique was employed to experimentally elevate maternal CORT during egg laying, and its effects upon sex ratio and nestling quality were measured. We found that maternal CORT was not correlated with brood sex ratio, but mothers with elevated CORT fledged lighter offspring. Also, experimental elevation of maternal CORT did not influence brood sex ratio or nestling quality. In one year, mothers in superior body condition produced male biased broods, and maternal condition was positively correlated with both nestling mass and growth rate in all years. Unlike previous studies maternal condition was not correlated with maternal CORT. This study provides evidence that maternal condition is linked to brood sex ratio manipulation in blue tits. However, maternal baseline CORT may not be the mechanistic link between the maternal condition and sex ratio adjustment. Overall, this study serves to highlight the complexity of sex ratio adjustment in birds and the difficulties associated with identifying sex biasing mechanisms

    An adaptive annual rhythm in the sex of first pigeon eggs

    Get PDF
    When the reproductive value of male and female offspring varies differentially, parents are predicted to adjust the sex ratio of their offspring to maximize their fitness (Trivers and Willard, Science 179:90–92, 1973). Two factors have been repeatedly linked to skews in avian offspring sex ratio. First, laying date can affect offspring sex ratio when the sexes differ in age of first reproduction, such that the more slowly maturing sex is overproduced early in the season. Second, position of the egg in the laying sequence of a clutch may affect sex ratio bias since manipulating the sex of the first eggs may be least costly to the mother. We studied both factors in two non-domesticated pigeon species. Both the Wood pigeon (Columba palumbus) and the Rock pigeon (Columba livia) have long breeding seasons and lay two-egg clutches. In the field, we determined the sex of Wood pigeon nestlings. In Rock pigeons, housed in captivity outdoors, we determined embryo sex after 3 days of incubation. On the basis of their sex-specific age of first reproduction, we predicted that males, maturing at older age than females, should be produced in majority early and females later in the year. This was confirmed for both species. The bias was restricted to first eggs. Rock pigeons produced clutches throughout the year and show that the sex of the first egg followed an annual cycle. To our knowledge, this study presents the first evidence of a full annual rhythm in adaptive sex allocation in birds. We suggest that this reflects an endogenous seasonal program in primary sex ratio controlled by a preovulatory mechanism

    The influence of nativity and neighborhoods on breast cancer stage at diagnosis and survival among California Hispanic women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the US, foreign-born Hispanics tend to live in socioeconomic conditions typically associated with later stage of breast cancer diagnosis, yet they have lower breast cancer mortality rates than their US-born counterparts. We evaluated the impact of nativity (US- versus foreign-born), neighborhood socioeconomic status (SES) and Hispanic enclave (neighborhoods with high proportions of Hispanics or Hispanic immigrants) on breast cancer stage at diagnosis and survival among Hispanics.</p> <p>Methods</p> <p>We studied 37,695 Hispanic women diagnosed from 1988 to 2005 with invasive breast cancer from the California Cancer Registry. Nativity was based on registry data or, if missing, imputed from case Social Security number. Neighborhood variables were developed from Census data. Stage at diagnosis was analyzed with logistic regression, and survival, based on vital status determined through 2007, was analyzed with Cox proportional hazards regression.</p> <p>Results</p> <p>Compared to US-born Hispanics, foreign-born Hispanics were more likely to be diagnosed at an advanced stage of breast cancer (adjusted odds ratio (OR) = 1.14, 95% confidence interval (CI): 1.09-1.20), but they had a somewhat lower risk of breast cancer specific death (adjusted hazard ratio (HR) = 0.94, 95% CI: 0.90-0.99). Living in low SES and high enclave neighborhoods was associated with advanced stage of diagnosis, while living in a lower SES neighborhood, but not Hispanic enclave, was associated with worse survival.</p> <p>Conclusion</p> <p>Identifying the modifiable factors that facilitate this survival advantage in Hispanic immigrants could help to inform specific interventions to improve survival in this growing population.</p

    Role of Caveolae in Cardiac Protection

    Get PDF
    Myocardial ischemia/reperfusion injury is a major cause of morbidity and mortality. The molecular signaling pathways involved in cardiac protection from myocardial ischemia/reperfusion injury are complex. An emerging idea in signal transduction suggests the existence of spatially organized complexes of signaling molecules in lipid-rich microdomains of the plasma membrane known as caveolae. Caveolins—proteins abundant in caveolae—provide a scaffold to organize, traffic, and regulate signaling molecules. Numerous signaling molecules involved in cardiac protection are known to exist within caveolae or interact directly with caveolins. Over the last 4 years, our laboratories have explored the hypothesis that caveolae are vitally important to cardiac protection from myocardial ischemia/reperfusion injury. We have provided evidence that (1) caveolae and the caveolin isoforms 1 and 3 are essential for cardiac protection from myocardial ischemia/reperfusion injury, (2) stimuli that produce preconditioning of cardiac myocytes, including brief periods of ischemia/reperfusion and exposure to volatile anesthetics, alter the number of membrane caveolae, and (3) cardiac myocyte-specific overexpression of caveolin-3 can produce innate cardiac protection from myocardial ischemia/reperfusion injury. The work demonstrates that caveolae and caveolins are critical elements of signaling pathways involved in cardiac protection and suggests that caveolins are unique targets for therapy in patients at risk of myocardial ischemia

    Human Glycolipid Transfer Protein (GLTP) Expression Modulates Cell Shape

    Get PDF
    Glycolipid transfer protein (GLTP) accelerates glycosphingolipid (GSL) intermembrane transfer via a unique lipid transfer/binding fold (GLTP-fold) that defines the GLTP superfamily and is the prototype for GLTP-like domains in larger proteins, i.e. phosphoinositol 4-phosphate adaptor protein-2 (FAPP2). Although GLTP-folds are known to play roles in the nonvesicular intracellular trafficking of glycolipids, their ability to alter cell phenotype remains unexplored. In the present study, overexpression of human glycolipid transfer protein (GLTP) was found to dramatically alter cell phenotype, with cells becoming round between 24 and 48 h after transfection. By 48 h post transfection, ∟70% conversion to the markedly round shape was evident in HeLa and HEK-293 cells, but not in A549 cells. In contrast, overexpression of W96A-GLTP, a liganding-site point mutant with abrogated ability to transfer glycolipid, did not alter cell shape. The round adherent cells exhibited diminished motility in wound healing assays and an inability to endocytose cholera toxin but remained viable and showed little increase in apoptosis as assessed by poly(ADP-ribose) polymerase cleavage. A round cell phenotype also was induced by overexpression of FAPP2, which binds/transfers glycolipid via its C-terminal GLTP-like fold, but not by a plant GLTP ortholog (ACD11), which is incapable of glycolipid binding/transfer. Screening for human protein partners of GLTP by yeast two hybrid screening and by immuno-pulldown analyses revealed regulation of the GLTP-induced cell rounding response by interaction with δ-catenin. Remarkably, while δ-catenin overexpression alone induced dendritic outgrowths, coexpression of GLTP along with δ-catenin accelerated transition to the rounded phenotype. The findings represent the first known phenotypic changes triggered by GLTP overexpression and regulated by direct interaction with a p120-catenin protein family member

    Prospective study of grapefruit intake and risk of breast cancer in postmenopausal women: the Multiethnic Cohort Study

    Get PDF
    In vitro and in vivo studies have shown that cytochrome P450 3A4 (CYP3A4) is involved in the metabolism of oestrogens. There is evidence that grapefruit, an inhibitor of CYP3A4, increases plasma oestrogen concentrations. Since it is well established that oestrogen is associated with breast cancer risk, it is plausible that regular intake of grapefruit would increase a woman's risk of breast cancer. We investigated the association of grapefruit intake with breast cancer risk in the Hawaii–Los Angeles Multiethnic Cohort Study, a prospective cohort that includes over 50 000 postmenopausal women from five racial/ethnic groups. A total of 1657 incident breast cancer cases were available for analysis. Grapefruit intake was significantly associated with an increased risk of breast cancer (relative risk=1.30, 95% confidence interval 1.06–1.58) for subjects in the highest category of intake, that is, one-quarter grapefruit or more per day, compared to non-consumers (Ptrend=0.015). An increased risk of similar magnitude was seen in users of oestrogen therapy, users of oestrogen+progestin therapy, and among never users of hormone therapy. Grapefruit intake may increase the risk of breast cancer among postmenopausal women
    • …
    corecore