12 research outputs found

    Luminous Infrared Galaxies with the Submillimeter Array: I. Survey Overview and the Central Gas to Dust Ratio

    Get PDF
    We present new data obtained with the Submillimeter Array for a sample of fourteen nearby luminous and ultraluminous infrared galaxies. The galaxies were selected to have luminosity distances D < 200 Mpc and far-infrared luminosities log(L_FIR) > 11.4. The galaxies were observed with spatial resolutions of order 1 kpc in the CO J=3-2, CO J=2-1, 13CO J=2-1, and HCO+ J=4-3 lines as well as the continuum at 880 microns and 1.3 mm. We have combined our CO and continuum data to measure an average gas-to-dust mass ratio of 120 +/- 28 (rms deviation 109) in the central regions of these galaxies, very similar to the value of 150 determined for the Milky Way. This similarity is interesting given the more intense heating from the starburst and possibly accretion activity in the luminous infrared galaxies compared to the Milky Way. We find that the peak H_2 surface density correlates with the far-infrared luminosity, which suggests that galaxies with higher gas surface densities inside the central kiloparsec have a higher star formation rate. The lack of a significant correlation between total H_2 mass and far-infrared luminosity in our sample suggests that the increased star formation rate is due to the increased availability of molecular gas as fuel for star formation in the central regions. In contrast to previous analyses by other authors, we do not find a significant correlation between central gas surface density and the star formation efficiency, as trace by the ratio of far-infrared luminosity to nuclear gas mass. Our data show that it is the star formation rate, not the star formation efficiency, that increases with increasing central gas surface density in these galaxies.Comment: 66 pages, 39 figures, aastex preprint format; to be published in ApJ Supplements. Version of paper with full resolution figures available at http://www.physics.mcmaster.ca/~wilson/www_xfer/ULIRGS_publi

    Very Large Array Observations of Galactic Center OH 1720 MHz Masers in Sagittarius A East and in the Circumnuclear Disk

    Full text link
    We present Very Large Array (VLA) radio interferometry observations of the 1720 MHz OH masers in the Galactic Center (GC). Most 1720 MHz OH masers arise in regions where the supernova remnant Sgr A East is interacting with the interstellar medium. The majority of the newly found 1720 MHz OH masers are located to the northeast, independently indicating and confirming an area of shock interaction with the +50 km/s molecular cloud (M-0.02-0.07) on the far side of Sgr A East. The previously known bright masers in the southeast are suggested to be the result of the interaction between two supernova remnants, instead of between Sgr A East and the surrounding molecular clouds as generally found elsewhere in the Galaxy. Together with masers north of the circumnuclear disk (CND) they outline an interaction on the near side of Sgr A East. In contrast to the interaction between the +50 km/s cloud and Sgr A East, OH absorption data do not support a direct interaction between the CND material and Sgr A East. We also present three new high-negative velocity masers, supporting a previous single detection. The location and velocities of the high-negative and high-positive velocity masers are consistent with being near the tangent points of, and physically located in the CND. We argue that the high velocity masers in the CND are pumped by dissipation between density clumps in the CND instead of a shock generated by the supernova remnant. That is, the CND masers are not coupled to the supernova remnant and are sustained independently.Comment: accepted to ApJ, 9 pages 3 figure

    Luminous Infrared Galaxies with the Submillimeter Array: II. Comparing the CO(3-2) Sizes and Luminosities of Local and High-Redshift Luminous Infrared Galaxies

    Get PDF
    We present a detailed comparison of the CO(3-2) emitting molecular gas between a local sample of luminous infrared galaxies (U/LIRGs) and a high redshift sample that comprises submm selected galaxies (SMGs), quasars, and Lyman Break Galaxies (LBGs). The U/LIRG sample consists of our recent CO(3-2) survey using the Submillimeter Array while the CO(3-2) data for the high redshift population are obtained from the literature. We find that the L(CO(3-2)) and L(FIR) relation is correlated over five orders of magnitude, which suggests that the molecular gas traced in CO(3-2) emission is a robust tracer of dusty star formation activity. The near unity slope of 0.93 +/- 0.03 obtained from a fit to this relation suggests that the star formation efficiency is constant to within a factor of two across different types of galaxies residing in vastly different epochs. The CO(3-2) size measurements suggest that the molecular gas disks in local U/LIRGs (0.3 - 3.1 kpc) are much more compact than the SMGs (3 - 16 kpc), and that the size scales of SMGs are comparable to the nuclear separation (5 - 40 kpc) of the widely separated nuclei of U/LIRGs in our sample. We argue from these results that the SMGs studied here are predominantly intermediate stage mergers, and that the wider line-widths arise from the violent merger of two massive gas-rich galaxies taking place deep in a massive halo potential.Comment: 16 pages, 5 figures, ApJ Accepte

    PihlstromY_StellarMasers_v1

    No full text
    corecore