101 research outputs found

    TAVI: New trials and registries offer further welcome evidence - U.S. CoreValve, CHOICE, and GARY

    Get PDF
    The introduction of transcatheter aortic valve implantation (TAVI) has resulted in a paradigm shift in the treatment of patients with severe aortic stenosis. Data from the recent U.S CoreValve Trial suggest, for the first time, that TAVI is associated with a significantly higher rate of survival at one year compared to surgical aortic valve replacement (SAVR) in the treatment of high-risk patients affected by severe aortic stenosis. The present review discusses this study and the current evidence about TAVI, for the treatment of severe aortic stenosis, from major trials and real world registries

    Proof of concept study on coronary microvascular function in low flow low gradient aortic stenosis

    Get PDF
    ObjectivesWe hypothesised that low flow low gradient aortic stenosis (LFLGAS) is associated with more severe coronary microvascular dysfunction (CMD) compared with normal-flow high-gradient aortic stenosis (NFHGAS) and that CMD is related to reduced cardiac performance. MethodsInvasive CMD assessment was performed in 41 consecutive patients with isolated severe aortic stenosis with unobstructed coronary arteries undergoing transcatheter aortic valve implantation (TAVI). The index of microcirculatory resistance (IMR), resistive reserve ratio (RRR) and coronary flow reserve (CFR) were measured in the left anterior descending artery before and after TAVI. Speckle tracking echocardiography was performed to assess cardiac function at baseline and repeated at 6 months. ResultsIMR was significantly higher in patients with LFLGAS compared with patients with NFHGAS (24.1 (14.6 to 39.1) vs 12.8 (8.6 to 19.2), p=0.002), while RRR was significantly lower (1.4 (1.1 to 2.1) vs 2.6 (1.5 to 3.3), p=0.020). No significant differences were observed in CFR between the two groups. High IMR was associated with low stroke volume index, low cardiac output and reduced peak atrial longitudinal strain (PALS). TAVI determined no significant variation in microvascular function (IMR: 16.0 (10.4 to 26.1) vs 16.6 (10.2 to 25.6), p=0.403) and in PALS (15.9 (9.9 to 26.5) vs 20.1 (12.3 to 26.7), p=0.222). Conversely, left ventricular (LV) global longitudinal strain increased after TAVI (-13.2 (8.4 to 16.6) vs -15.1 (9.4 to 17.8), p=0.047). In LFLGAS, LV systolic function recovered after TAVI in patients with preserved microvascular function but not in patients with CMD. ConclusionsCMD is more severe in patients with LFLGAS compared with NFHGAS and is associated with low-flow state, left atrial dysfunction and reduced cardiac performance

    Validation of Prosthetic Mitral Regurgitation Quantification Using Novel Angiographic Platform by Mock Circulation.

    Get PDF
    This study aimed to validate a dedicated software for quantitative videodensitometric angiographic assessment of mitral regurgitation (QMR).Quantitative videodensitometric aortography of aortic regurgitation using the time-density principle is a well-documented technique, but the angiographic assessment of mitral regurgitation (MR) remains at best semi-quantitative and operator dependent.Fourteen sheep underwent surgical mitral valve replacement using 2 different prostheses. Pre-sacrifice left ventriculograms were used to assess MR fraction (MRF) using QMR and MR volume (MRV). In an independent core lab, the CAAS QMR 0.1 was used for QMR analysis. In vitro MRF and MRV were assessed in a mock circulation at a comparable cardiac output to the in vivo one by thermodilution. The correlations and agreements of in vitro and in vivo MRF, MRV, and interobserver reproducibility for QMR analysis were assessed using the averaged cardiac cycles (CCs).In vivo derived MRF by QMR strongly correlated with in vitro derived MRF, regardless of the number of the CCs analyzed (best correlation: 3 CCs y = 0.446 + 0.994x; R = 0.784; p =0.002). The mean absolute difference between in vitro derived MRF and in vivo derived MRF from 3 CCs was 0.01 ± 4.2% on Bland-Altman analysis. In vitro MRV and in vivo MRV from 3 CCs were very strongly correlated (y = 0.196 + 1.255x; R = 0.839; p 0.001). The mean absolute difference between in vitro MRV and in vivo MRV from 3 CCs was -1.4 ± 1.9 ml. There were very strong correlations of in vivo MRF between 2 independent analysts, regardless of the number of the CCs.In vivo MRF using the novel software is feasible, accurate, and highly reproducible. These promising results have led us to initiate the first human feasibility study comprising patients undergoing percutaneous mitral valve edge-to-edge repair

    Quantitative aortography for assessment of aortic regurgitation in the era of percutaneous aortic valve replacement

    Get PDF
    Paravalvular leak (PVL) is a shortcoming that can erode the clinical benefits of transcatheter valve replacement (TAVR) and therefore a readily applicable method (aortography) to quantitate PVL objectively and accurately in the interventional suite is appealing to all operators. The ratio between the areas of the time-density curves in the aorta and left ventricular outflow tract (LVOT-AR) defines the regurgitation fraction (RF). This technique has been validated in a mock circulation; a single injection in diastole was further tested in porcine and ovine models. In the clinical setting, LVOT-AR was compared with trans-thoracic and trans-oesophageal echocardiography and cardiac magnetic resonance imaging. LVOT-AR > 17% discriminates mild from moderate aortic regurgitation on echocardiography and confers a poor prognosis in multiple registries, and justifies balloon post-dilatation. The LVOT-AR differentiates the individual performances of many old and novel devices and is being used in ongoing randomized trials and registries

    Quantitative aortography for assessment of aortic regurgitation in the era of percutaneous aortic valve replacement

    Get PDF
    Paravalvular leak (PVL) is a shortcoming that can erode the clinical benefits of transcatheter valve replacement (TAVR) and therefore a readily applicable method (aortography) to quantitate PVL objectively and accurately in the interventional suite is appealing to all operators. The ratio between the areas of the time-density curves in the aorta and left ventricular outflow tract (LVOT-AR) defines the regurgitation fraction (RF). This technique has been validated in a mock circulation; a single injection in diastole was further tested in porcine and ovine models. In the clinical setting, LVOT-AR was compared with trans-thoracic and trans-oesophageal echocardiography and cardiac magnetic resonance imaging. LVOT-AR &gt; 17% discriminates mild from moderate aortic regurgitation on echocardiography and confers a poor prognosis in multiple registries, and justifies balloon post-dilatation. The LVOT-AR differentiates the individual performances of many old and novel devices and is being used in ongoing randomized trials and registries.</p

    Quantitative aortography for assessment of aortic regurgitation in the era of percutaneous aortic valve replacement

    Get PDF
    Paravalvular leak (PVL) is a shortcoming that can erode the clinical benefits of transcatheter valve replacement (TAVR) and therefore a readily applicable method (aortography) to quantitate PVL objectively and accurately in the interventional suite is appealing to all operators. The ratio between the areas of the time-density curves in the aorta and left ventricular outflow tract (LVOT-AR) defines the regurgitation fraction (RF). This technique has been validated in a mock circulation; a single injection in diastole was further tested in porcine and ovine models. In the clinical setting, LVOT-AR was compared with trans-thoracic and trans-oesophageal echocardiography and cardiac magnetic resonance imaging. LVOT-AR &gt; 17% discriminates mild from moderate aortic regurgitation on echocardiography and confers a poor prognosis in multiple registries, and justifies balloon post-dilatation. The LVOT-AR differentiates the individual performances of many old and novel devices and is being used in ongoing randomized trials and registries.</p

    Quantitative aortography for assessment of aortic regurgitation in the era of percutaneous aortic valve replacement

    Get PDF
    Paravalvular leak (PVL) is a shortcoming that can erode the clinical benefits of transcatheter valve replacement (TAVR) and therefore a readily applicable method (aortography) to quantitate PVL objectively and accurately in the interventional suite is appealing to all operators. The ratio between the areas of the time-density curves in the aorta and left ventricular outflow tract (LVOT-AR) defines the regurgitation fraction (RF). This technique has been validated in a mock circulation; a single injection in diastole was further tested in porcine and ovine models. In the clinical setting, LVOT-AR was compared with trans-thoracic and trans-oesophageal echocardiography and cardiac magnetic resonance imaging. LVOT-AR &gt; 17% discriminates mild from moderate aortic regurgitation on echocardiography and confers a poor prognosis in multiple registries, and justifies balloon post-dilatation. The LVOT-AR differentiates the individual performances of many old and novel devices and is being used in ongoing randomized trials and registries

    As TAVI Population Expands, More Studies of Permanent Pacemaker Implantation Are Needed

    No full text
    AORTIC-VALVE IMPLANTATION; BUNDLE-BRANCH BLOCK; ATRIOVENTRICULAR-BLOCK; PREDICTOR
    • …
    corecore