18 research outputs found

    The induced saturation problem for posets

    Get PDF
    For a fixed poset PP, a family F\mathcal F of subsets of [n][n] is induced PP-saturated if F\mathcal F does not contain an induced copy of PP, but for every subset SS of [n][n] such that S∉F S\not \in \mathcal F, then PP is an induced subposet of F{S}\mathcal F \cup \{S\}. The size of the smallest such family F\mathcal F is denoted by sat(n,P)\text{sat}^* (n,P). Keszegh, Lemons, Martin, P\'alv\"olgyi and Patk\'os [Journal of Combinatorial Theory Series A, 2021] proved that there is a dichotomy of behaviour for this parameter: given any poset PP, either sat(n,P)=O(1)\text{sat}^* (n,P)=O(1) or sat(n,P)log2n\text{sat}^* (n,P)\geq \log _2 n. In this paper we improve this general result showing that either sat(n,P)=O(1)\text{sat}^* (n,P)=O(1) or sat(n,P)2n2\text{sat}^* (n,P) \geq 2 \sqrt{n-2}. Our proof makes use of a Tur\'an-type result for digraphs. Curiously, it remains open as to whether our result is essentially best possible or not. On the one hand, a conjecture of Ivan states that for the so-called diamond poset \Diamond we have sat(n,)=Θ(n)\text{sat}^* (n,\Diamond)=\Theta (\sqrt{n}); so if true this conjecture implies our result is tight up to a multiplicative constant. On the other hand, a conjecture of Keszegh, Lemons, Martin, P\'alv\"olgyi and Patk\'os states that given any poset PP, either sat(n,P)=O(1)\text{sat}^* (n,P)=O(1) or sat(n,P)n+1\text{sat}^*(n,P)\geq n+1. We prove that this latter conjecture is true for a certain class of posets PP.Comment: 12 page

    rr-cross tt-intersecting families via necessary intersection points

    Get PDF
    Given integers r2r\geq 2 and n,t1n,t\geq 1 we call families F1,,FrP([n])\mathcal{F}_1,\dots,\mathcal{F}_r\subseteq\mathscr{P}([n]) rr-cross tt-intersecting if for all FiFiF_i\in\mathcal{F}_i, i[r]i\in[r], we have i[r]Fit\vert\bigcap_{i\in[r]}F_i\vert\geq t. We obtain a strong generalisation of the classic Hilton-Milner theorem on cross intersecting families. In particular, we determine the maximum of j[r]Fj\sum_{j\in [r]}\vert\mathcal{F}_j\vert for rr-cross tt-intersecting families in the cases when these are kk-uniform families or arbitrary subfamilies of P([n])\mathscr{P}([n]). Only some special cases of these results had been proved before. We obtain the aforementioned theorems as instances of a more general result that considers measures of rr-cross tt-intersecting families. This also provides the maximum of j[r]Fj\sum_{j\in [r]}\vert\mathcal{F}_j\vert for families of possibly mixed uniformities k1,,krk_1,\ldots,k_r.Comment: 13 page

    On oriented cycles in randomly perturbed digraphs

    Full text link
    In 2003, Bohman, Frieze, and Martin initiated the study of randomly perturbed graphs and digraphs. For digraphs, they showed that for every α>0\alpha>0, there exists a constant CC such that for every nn-vertex digraph of minimum semi-degree at least αn\alpha n, if one adds CnCn random edges then asymptotically almost surely the resulting digraph contains a consistently oriented Hamilton cycle. We generalize their result, showing that the hypothesis of this theorem actually asymptotically almost surely ensures the existence of every orientation of a cycle of every possible length, simultaneously. Moreover, we prove that we can relax the minimum semi-degree condition to a minimum total degree condition when considering orientations of a cycle that do not contain a large number of vertices of indegree 11. Our proofs make use of a variant of an absorbing method of Montgomery.Comment: 24 pages, 7 figures. Author accepted manuscript, to appear in Combinatorics, Probability and Computin

    Números de Turán en coloreos promedio para grafos completos

    No full text
    Ingeniero Civil MatemáticoUn coloreo de aristas de un grafo se llama γ-promedio si es que el número promedio de colores incidentes a cada vértice es a lo más γ. Dados n, m enteros positivos y γ un real positivo, el número de Turán promedio coloreado T(n, K_m, γ-promedio) corresponde a la máxima cantidad de aristas que puede tener un grafo de n vértices de manera que exista un coloreo γ-promedio que no contenga ninguna copia monocromática de K_m. Esta noción fue introducida por Caro, quien observa que la expansión (blow-up) de un grafo completo γ-promedio coloreado sin copias monocromáticas de K_m también es γ-promedio coloreado y tampoco posee copias monocromáticas de K_m. Con ello, Caro se pregunta de si el máximo de aristas buscado se alcanza en la expansión de un grafo completo γ-promedio coloreado que maximice el número de vértices bajo la condición de no contener una copia monocromática de K_m (un coloreo extremal para el número de Ramsey γ-promedio). Yuster probó que la respuesta es afirmativa para el caso m=3 y γ=2, y además conjeturó que la respuesta es siempre afirmativa para todos los γ = ℓ ∈ N. En la presente memoria se demuestra esta conjetura de Yuster cuando m >= ℓ(ℓ+1)+1. Por otro lado, se demuestra también que la respuesta a la pregunta de Caro es negativa para un conjunto no numerable de valores de γ ∉ N

    Hypergraphs with arbitrarily small codegree Tur\'an density

    Full text link
    Let k3k\geq 3. Given a kk-uniform hypergraph HH, the minimum codegree δ(H)\delta(H) is the largest dNd\in\mathbb{N} such that every (k1)(k-1)-set of V(H)V(H) is contained in at least dd edges. Given a kk-uniform hypergraph FF, the codegree Tur\'an density γ(F)\gamma(F) of FF is the smallest γ[0,1]\gamma \in [0,1] such that every kk-uniform hypergraph on nn vertices with δ(H)(γ+o(1))n\delta(H)\geq (\gamma + o(1))n contains a copy of FF. Similarly as other variants of the hypergraph Tur\'an problem, determining the codegree Tur\'an density of a hypergraph is in general notoriously difficult and only few results are known. In this work, we show that for every ε>0\varepsilon>0, there is a kk-uniform hypergraph FF with 0<γ(F)<ε0<\gamma(F)<\varepsilon. This is in contrast to the classical Tur\'an density, which cannot take any value in the interval (0,k!/kk)(0,k!/k^k) due to a fundamental result by Erd\H{o}s.Comment: 12 page

    Cycle decompositions in 3-uniform hypergraphs

    No full text
    We show that 33-graphs on nn vertices whose codegree is at least (2/3+o(1))n(2/3 + o(1))n can be decomposed into tight cycles and admit Euler tours, subject to the trivial necessary divisibility conditions. We also provide a construction showing that our bounds are best possible up to the o(1)o(1) term. All together, our results answer in the negative some recent questions of Glock, Joos, K\"uhn, and Osthus.Comment: 28 pages, fixed small errors in references and compilatio
    corecore