4 research outputs found

    Estimating Fielding Ability in Baseball Players Over Time

    Get PDF
    Quantitative evaluation of fielding ability in baseball has been an ongoing challenge for statisticians. Detailed recording of ball-in-play data in recent years has spurred the development of sophisticated fielding models. Foremost among these approaches, Jensen et al. (2009) used a hierarchical Bayesian model to estimate spatial fielding curves for individual players. These previous efforts have not addressed evolution in a player’s fielding ability over time. We expand the work of Jensen et al. (2009) to model the fielding ability of individual players over multiple seasons. Several different models are implemented and compared via posterior predictive validation on hold-out data. Among our choices, we find that a model which imposes shrinkage towards an age-specific average gives the best performance. Our temporal models allow us to delineate the performance of a fielder on a season-to-season basis versus their entire career

    A Point-Mass Mixture Random Effects Model for Pitching Metrics

    Get PDF
    A plethora of statistics have been proposed to measure the effectiveness of pitchers in Major League Baseball. While many of these are quite traditional (e.g., ERA, wins), some have gained currency only recently (e.g., WHIP, K/BB). Some of these metrics may have predictive power, but it is unclear which are the most reliable or consistent. We address this question by constructing a Bayesian random effects model that incorporates a point mass mixture and fitting it to data on twenty metrics spanning approximately 2,500 players and 35 years. Our model identifies FIP, HR/9, ERA, and BB/9 as the highest signal metrics for starters and GB%, FB%, and K/9 as the highest signal metrics for relievers. In general, the metrics identified by our model are independent of team defense. Our procedure also provides a relative ranking of metrics separately by starters and relievers and shows that these rankings differ quite substantially between them. Our methodology is compared to a Lasso-based procedure and is internally validated by detailed case studies

    A Hierarchical Bayesian Variable Selection Approach to Major League Baseball Hitting Metrics

    Get PDF
    Numerous statistics have been proposed to measure offensive ability in Major League Baseball. While some of these measures may offer moderate predictive power in certain situations, it is unclear which simple offensive metrics are the most reliable or consistent. We address this issue by using a hierarchical Bayesian variable selection model to determine which offensive metrics are most predictive within players across time. Our sophisticated methodology allows for full estimation of the posterior distributions for our parameters and automatically adjusts for multiple testing, providing a distinct advantage over alternative approaches. We implement our model on a set of fifty different offensive metrics and discuss our results in the context of comparison to other variable selection techniques. We find that a large number of metrics demonstrate signal. However, these metrics are (i) highly correlated with one another, (ii) can be reduced to about five without much loss of information, and (iii) these five relate to traditional notions of performance (e.g., plate discipline, power, and ability to make contact)

    A Hierarchical Bayesian Variable Selection Approach to Major League Baseball Hitting Metrics

    Get PDF
    Numerous statistics have been proposed to measure offensive ability in Major League Baseball. While some of these measures may offer moderate predictive power in certain situations, it is unclear which simple offensive metrics are the most reliable or consistent. We address this issue by using a hierarchical Bayesian variable selection model to determine which offensive metrics are most predictive within players across time. Our sophisticated methodology allows for full estimation of the posterior distributions for our parameters and automatically adjusts for multiple testing, providing a distinct advantage over alternative approaches. We implement our model on a set of fifty different offensive metrics and discuss our results in the context of comparison to other variable selection techniques. We find that a large number of metrics demonstrate signal. However, these metrics are (i) highly correlated with one another, (ii) can be reduced to about five without much loss of information, and (iii) these five relate to traditional notions of performance (e.g., plate discipline, power, and ability to make contact)
    corecore