878 research outputs found

    Pressure-driven relaxation processes in nanocomposite ionic glass LiFe0.75_{0.75}V0.10_{0.10}PO4_{4}

    Full text link
    This paper presents results for systems formed in a solid glassy state after nanocrystallization process above the glass temperature. We analyze electric conductivity and relaxation processes after such treatment under high temperature (HT) and high pressure (HP-HT) as well. The latter leads to ca. 8% increase of density, two decades (100) increase of electric conductivity as well as qualitative changes in relaxation processes. The previtreous-type changes of the relaxation time on cooling is analyzed by the use of critical-like and the 'critical-activated' description. Presented results correspond well with obtained for this material and shown in ref. [8]. The evidence for pressure evolution of the glass and crystallization temperatures, indicating the unique possibility of maxima and crossovers is also reported

    Properties of LiMnBO3 glasses and nanostructured glass-ceramics

    Full text link
    Polycrystalline LiMnBO3 is a promising cathode material for Li-ion batteries. In this work, we investigated the thermal, structural and electrical properties of glassy and nanocrystallized materials having the same chemical composition. The original glass was obtained via a standard meltquenching method. SEM and 7Li solid-state NMR indicate that it contains a mixture of two distinct glassy phases. The results suggest that the electrical conductivity of the glass is dominated by the ionic one. The dc conductivity of initial glass was estimated to be in the order of 10-18 S.cm-1 at room temperature. The thermal nanocrystallization of the glass produces a nanostructured glass-ceramics containing MnBO3 and LiMnBO3 phases. The electric conductivity of this glass-ceramics is increased by 6 orders of magnitude, compared to the starting material at room temperature. Compared to other manganese and borate containing glasses reported in the literature, the conductivity of the nanostructured glass ceramics is higher than that of the previously reported glassy materials. Such improved conductivity stems from the facilitated electronic transport along the grain boundaries

    The Complexity of Repairing, Adjusting, and Aggregating of Extensions in Abstract Argumentation

    Full text link
    We study the computational complexity of problems that arise in abstract argumentation in the context of dynamic argumentation, minimal change, and aggregation. In particular, we consider the following problems where always an argumentation framework F and a small positive integer k are given. - The Repair problem asks whether a given set of arguments can be modified into an extension by at most k elementary changes (i.e., the extension is of distance k from the given set). - The Adjust problem asks whether a given extension can be modified by at most k elementary changes into an extension that contains a specified argument. - The Center problem asks whether, given two extensions of distance k, whether there is a "center" extension that is a distance at most (k-1) from both given extensions. We study these problems in the framework of parameterized complexity, and take the distance k as the parameter. Our results covers several different semantics, including admissible, complete, preferred, semi-stable and stable semantics

    Parameterized complexity of the MINCCA problem on graphs of bounded decomposability

    Full text link
    In an edge-colored graph, the cost incurred at a vertex on a path when two incident edges with different colors are traversed is called reload or changeover cost. The "Minimum Changeover Cost Arborescence" (MINCCA) problem consists in finding an arborescence with a given root vertex such that the total changeover cost of the internal vertices is minimized. It has been recently proved by G\"oz\"upek et al. [TCS 2016] that the problem is FPT when parameterized by the treewidth and the maximum degree of the input graph. In this article we present the following results for the MINCCA problem: - the problem is W[1]-hard parameterized by the treedepth of the input graph, even on graphs of average degree at most 8. In particular, it is W[1]-hard parameterized by the treewidth of the input graph, which answers the main open problem of G\"oz\"upek et al. [TCS 2016]; - it is W[1]-hard on multigraphs parameterized by the tree-cutwidth of the input multigraph; - it is FPT parameterized by the star tree-cutwidth of the input graph, which is a slightly restricted version of tree-cutwidth. This result strictly generalizes the FPT result given in G\"oz\"upek et al. [TCS 2016]; - it remains NP-hard on planar graphs even when restricted to instances with at most 6 colors and 0/1 symmetric costs, or when restricted to instances with at most 8 colors, maximum degree bounded by 4, and 0/1 symmetric costs.Comment: 25 pages, 11 figure

    Predictable arguments of knowledge

    Get PDF
    We initiate a formal investigation on the power of predictability for argument of knowledge systems for NP. Specifically, we consider private-coin argument systems where the answer of the prover can be predicted, given the private randomness of the verifier; we call such protocols Predictable Arguments of Knowledge (PAoK). Our study encompasses a full characterization of PAoK, showing that such arguments can be made extremely laconic, with the prover sending a single bit, and assumed to have only one round (i.e., two messages) of communication without loss of generality. We additionally explore PAoK satisfying additional properties (including zero-knowledge and the possibility of re-using the same challenge across multiple executions with the prover), present several constructions of PAoK relying on different cryptographic tools, and discuss applications to cryptography

    Detecting Subtle Changes in Visuospatial Executive Function and Learning in the Amnestic Variant of Mild Cognitive Impairment

    Get PDF
    BACKGROUND AND PURPOSE: Amnestic mild cognitive impairment (aMCI) is a putative prodromal stage of Alzheimer's disease (AD) characterized by deficits in episodic verbal memory. Our goal in the present study was to determine whether executive dysfunction may also be detectable in individuals diagnosed with aMCI. METHODS: This study used a hidden maze learning test to characterize component processes of visuospatial executive function and learning in a sample of 62 individuals with aMCI compared with 94 healthy controls. RESULTS: Relative to controls, individuals with aMCI made more exploratory/learning errors (Cohen's d = .41). Comparison of learning curves revealed that the slope between the first two of five learning trials was four times as steep for controls than for individuals with aMCI (Cohen's d = .64). Individuals with aMCI also made a significantly greater number of rule-break/error monitoring errors across learning trials (Cohen's d = .21). CONCLUSIONS: These results suggest that performance on a task of complex visuospatial executive function is compromised in individuals with aMCI, and likely explained by reductions in initial strategy formulation during early visual learning and "on-line" maintenance of task rules

    Securing computation against continuous leakage

    Get PDF
    30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010. ProceedingsWe present a general method to compile any cryptographic algorithm into one which resists side channel attacks of the only computation leaks information variety for an unbounded number of executions. Our method uses as a building block a semantically secure subsidiary bit encryption scheme with the following additional operations: key refreshing, oblivious generation of cipher texts, leakage resilience re-generation, and blinded homomorphic evaluation of one single complete gate (e.g. NAND). Furthermore, the security properties of the subsidiary encryption scheme should withstand bounded leakage incurred while performing each of the above operations. We show how to implement such a subsidiary encryption scheme under the DDH intractability assumption and the existence of a simple secure hardware component. The hardware component is independent of the encryption scheme secret key. The subsidiary encryption scheme resists leakage attacks where the leakage is computable in polynomial time and of length bounded by a constant fraction of the security parameter.Israel Science Foundation (710267)United States-Israel Binational Science Foundation (710613)National Science Foundation (U.S.) (6914349)Weizmann KAMAR Gran
    • …
    corecore