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ABSTRACT 

This report presents mainly the work done on Project 366, the 

"Fracture Toughness of Structural Steels", performed at Fritz 

Engineering Laboratory of Lehigh University under the sponsorship of 

Bethlehem Steel Corporation. The objectives of the program were 

(1) to conduct dynamic K type fracture tests on two structural steels 
. c 

across a range of plate thicknesses and temperatures, and (2) to 

explore plasticity concepts in formulating a fracture toughness char-

acterization method in the range of general yielding where the linear 

elastic approach to fracture toughness evaluation is not possible. 

This work constitutes essentially the initial efforts of a larger 

·program which was to include four steels and static as well as dynamic 

K evaluations. 
C. 

It was thought that the dynamic loading rate which provides 

minimum K values would be of more concern to the sponsor than the c 

higher static results. For this reason the static loading experiments 

were postponed. 

The goals of the program were to first use the Lehigh test 

specimen and drop-weight tear test machine to evaluate Kc values using 

a linear elastic approach whenever stress conditions permitted. Two 

plasticity methods were used to obtain "effective" K values in the c 

region of general yielding. The initial method, which received most 

attention, involved measurements of thickness reduction. Exploratory 
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trial was also given to a method based upon the plastic bend-angle for 

a specimen with an arrested crack. There was an overlap of data from 

the dynamic-elastic results and those obtained from the thickness 

reduction measurements. This overlap region was used to adjust the 

thickness reduction method. In the region of gross general yielding 

of the test specimens the plasticity results were the only K values 
c 

available. For this reason additional checks on these methods are 

desirable. 
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1. INTRODUCTION 

1.1 Definition of K 

The simplest method for expressing the ~easurement of resistance 

to crack extension employs a parameter, K, termed the stress intensity 

factor. Using a linear-elastic crack stress field analysis Irwin 

developed the equations for the stresses near the leading edge of a 

k . f K d h . I h . 1 h t . t. (1) crac 1n terms o an t e spec1men s p ys1ca c arac er1s 1cs. 

For an opening tensile mode (Mode I) type of fracture of an edge crack 

in an infinite plate of finite thickness these stresses are represented 

by the following equations: 

KI 9 
(1 

9 . 39) 
CJ = ;z,:rr cos 2 sin - s1n 2 

X 2 

< 

(1) 

KI 9 
(1 . 9 . 39 . 

CJ = cos 2 + s1n 2 nn y). y /2rr r 
(2) 

KI 9 9 39 ,. = sin - cos cos xy lzrr r 2 2 2 
(3) 

CJ = IJ. (CJ + CJ ) for plane strain 
z X y (4) 

or 
CJ = 0 for plane stress 

z 
(5) 

where the coordinates are as shown in Fig. 1. As indicated by the 

above equations and in the specified figure the analysis of stresses 

near the leading edge of a crack can be made in terms of the polar 
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coordinates, r and 9, whose coordinate system originates at the center 

of the zone of plasticity or non-linear strains located at the leading 

edge of the crack. 

The values of K are usually expressed in units of ksi Jin where 

K is defined as 

K = lim a .;zn-r 
y 

as r ..... 0 (6) 

Due to the inconsistency of the existence of a zone of 

plasticity in a linear-elastic stress analysis, a plastic zone correction 

is added to the original visible crack length, a . It is for this reason, 
0 

as mentioned above, that the center of the coordinate system used in 

the linear elastic stress analysis is placed at the center of the 

plastic zone, at a distance, a
0 

+ ry, from the edge of the plate and 

not at a distance, a , After introduction of the plastic zone 
~ 0 

correction, ry, the existence of the zone of plasticity is disregarded 

in the linear elastic solution. The ry correction, introduced by 

Irwin, (2) is given by 

1 
( 

K )2 (7) ry = 2n 0
YS 

where 
2ry = diameter of the plastic zone as shown 

in Fig. 1 

K = stress intensity factor 

O"YS = yield strength of the material 

If the plasticity adjustment factor at the leading edge of the 

crack is small compared to the thickness of the plate, a plane strain 
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condition will exist at the crack tip. For the plane strain condition, 

the value of the stress intensity factor, K, at the point of rapid 

crack extension or crack instability is termed Klc' or the "critical" 

stress intensity factor. This is the lowest possible K factor for the 

particular material at the testing temperature. If the converse is 

true and the plastic zone size, ry, is not small compared to the 

plate's thickness, a plane stress condition will exist. This situation 

occurs due to the lack of elastic constraint through the thickness 

(cr = 0) and results in various degrees of increase of the fracture 
z •;~ 

toughness, Kc' above the Kic value. 

1.2 Advantages in the Use of K 

Cracks in structural components caused in fabrication or 

developed under service loadings have always been regarded as de-

tractive to the strength of such members. With the advent of the 

theories of fracture mechanics the engineer is now better.equipped to 

estimate the significance of such cracks on the serviceability and 

safety of a component. 

In the past years, before fracture mechanics became an 

accepted tool for the engineer, gross assumptions were made in 

analyzing crack-related structural problems. Sometimes the load was 

regarded as uniformly distributed across the remaining cross-section 

neglecting totally the influence of the stress singularity at the 

crack tip upon the entire stress distribution in the member. Resulting 

from these analyses were strength estimates which were not realistic. 
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A conunon structural problem is th~ growth of a fatig·ue crack 

through the lower flange of the beam up into the web. The crack some-

times forms due to a poor weldment of a cover plate onto the beam's 

lower flange. Using the theories of fracture mechanics and knowing 

the crack length and the stress intensity factor, K, for the beam's 

material, a relatively accurate estimate can be made of the stress 

distribution in the vicinity of the crack tip, where the stress is 

critical. This type of analysis can give accurate stress results 

which would be helpful in estimating the serviceability of the 

structure and the load at which crack instability will occur. 

With the development of higher yield strength steels and their 

use in bridge design a problem arises in the fabrication of structural 

components. Larger bridges bring in the use of thicker member sizes 

which fosters a plane strain condition for fracture in the vicinity 

of any cracks or flaws. These Klc type conditions along with the high 

material yield strength decrease the allowable critical crack size in 

the component. In order to illustrate this phenomena, look at the 

following equation for the stress intensity, K, in a finite-width 

plate with a center crack, 2a
0 

(8) 

where Cis a function of the effective crack length, (a
0
+ ·ry), and 

the plate width. With K approaching its minimum K value and with 
Ic 

o increasing, with the higher yield strength materials, the effective 

crack length or flaw sizes resulting from fabrication must be kept to 

minimum sizes which can be estimated when the fracture toughness is 
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known. Thus the use of the theories of fracture mechanics are of 

practical importance. 

1.3 Limitations in the Linear Elastic Approach to Fracture Mechanics 

Due to Specimen Size 

Giving attention to the first objective of the project a 

testing program was devised and initiated in order to calculate the 

toughness characteristics of the two structural steels across a range 

of temperature and plate thickness using linear elastic fracture 

mechanics. 

In line with the previous work done at Lehigh University by 

Madison (3) and Luft, (4) a fixed size test· specimen, 3 inches deep and 

12 inches long, was employed in the present program. In order for the 

A441 specimens to satisfy the ASTM Klc testing requirement(S) relative 

to specimen thickness and crack size,the calculated K value resulting 
c 

from a drop-weight test would have to be less than 5.1 ksi /in (using 

crYS (dynamic) equal to 80 ksi). When the A441 structural steel was 

tested dynamically, the resulting K values that were equal to or less 

than the value designated above usually fell in temperature ranges 

that were quite low and not of particular interest to the project's 

goals. At these low temperatures the amount of stable crack growth 

and plasticity at the crack tip are so small that the results can be 

applied in a linear elastic fashion using no plasticity adjustment factor, 
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Much attention in the test program was focused on higher 

temperatures where the resistance to the onset of rapid fracturing is 

assisted by appreciable amounts of thickness reduction type yielding. 

Because of this an ry correction term for plasticity is added to the 

init.ial crack size, a , in calculating K • This technique theoretically 
0 c 

removes the region of plasticity from the analysis and extends the scope 

of linear elastic fracture mechanics into this region of limited 

yielding ahead of the crack tip. However, the small amount of stable 

crack growth that occurs before the onset of rapid fracturing is 

neglected in this analysis. The resulting moderate effect of this on 

the K evaluations appears to be an acceptable loss in view of the 
c 

testing simplicity gained by not measuring the stable crack growth. 

The ry correction technique for calculating Kc has its limit at the 

point of general yielding in the specimen. The K value corresponding 
c 

to this limit is approximately 100 ksi fin for A441 steel. Any 

characterization of toughness for the steels beyond the region of 

general yielding warrants another K characterization technique, and c . 

this is where the second objective of this program comes into focus. 

1.4 Plasticity K Characterization . c 

Several elastic-plastic theoretical models containing cracks 

have shown that as the ratio of the net section stress to the yield 

stress increases towards unity the proportionality between the crack 

opening displacement, o, and the square of the ry corrected K value 

tends to remain constant. ( 6) Direct measurements of the crack opening 
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stretch were not made, but a correlation was attempted between the 

thickness reduction and o where 

0 = (9) 

It was assumed that 6 was proportional to the thickness reduction with 

a near unity proportionality constant. 

Since the majority of the testing was done in the drop weight 

machine all measurements of thickness reduction had to be made after 

the fracture had occurred. Except for measurements of maximum load, 

"in-test" measurements were considered to be beyond the scope of the 

program. 

. 
A preliminary study was made of the thickness reduction contours 

ahead of the fatigue crack in a fractured specimen. A sample result is 

shown in Fig. 2. This figure shows how the thickness reduction 

contours expand just ahead of the fatigue crack and reach limiting or 

constant positions some distance ahead of t~e crack. Comparing this 

contour profile to a typical R-resistance curve,(]) shown in Fig. 3, 

it was reasoned that the initial expanding contours were related to 

the rising portion of the R-curve where the plastic zone develops with 

some small stable crack growth. In this region as the material's 

toughness increases and as the driving K reaches the critical K, 

unstable crack motion starts and continues at the plateau value. The 

plateau value of KR (termed ~) on the R-curve was reasoned to correspond 

to the region of constant thickness reduction. 
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A method relating this plateau K value to the thickness 

reduction was. devised, and it furnished a measuring technique to 

calculate ~ under conditions of gross general yielding. Concern over 

the amount of stable crack growth that occurs before the onset of 

crack instability (which might now be significant in the region of 

general yielding) is unwarranted because the devi~ed technique is 

applied beyond the stable crack growth region. The method involves 

equating the thickness reduction to 6 at a formulated normal distance 

from the flat tensile portion of the fractured surface. This technique 

was employed at set distances forward from the fatigue crack. Two such 

distances or sections were used to calculate ~ or an "effective" Kc 

because it seemed desirable to use more than one measurement for 

averaging purposes. 

In the dynamic tear-tests of the higher yield strength 

structural steels another K measuring technique was planned and 
c 

received exploratory trial. Due to the high degree of toughness of 

these steels near room temperature, the test specimens sometimes 

failed to fracture completely after the release of the drop-weight. 

What usually did result was a noticeable amount of crack movement down 

into the specimen with the development of a plastic hinge whose bend-

angle was easily measured. Assuming that this plastic hinge possessed 

an axis of rotation at the center of this ligament, a value of the 

crack opening stretch, 6, was calculated by means of simple geometry 

knowing the bend-angle, ~' the size of the net ligament, and the 

location of the elastic-plastic boundary. Due to the uncertainity of 



-11 

the location of this boundary in a Mode I displacement condition, an 

arbitrary constant, A, was included in the solution. Its value was 

determined experimentally. When the value of o was determined an 

effective K value was calculated using Eq. (9). c 

1.5 Minimum K Levels 
c 

The steels being tested were loading-rate sensitive (common) 

structural steels. As a result measurements of minimum K levels were 
c 

considered most important. Using the graph shown in Fig. 4 it was 

felt that using a loading time of 0.5 to 1.5 milliseconds 

3 -1 (1/t ~ 1 x 10 sec ) would result in minimum K levels. This loading 
c 

time was used in the drop-weight tear tests and its use was supported 

by the fact that in many of the dynamically tested specimens, crack 

arrest patterns were visible on the fractured surface. This proved 

that the cracking velocities were at a minimum and that K was near the 

value corresponding to crack arrest. From F~g. 4 the calculated Kc 

values can be regarded· as minimum values. 
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2. DESCRIPTION OF TESTS 

2.1 Specimen Size and Material 

The test specimens used in the drop-weight tear tests were 

12 in. long by 3 in. deep as shown in Fig. 5. The thickness of the 

specimens tested were 1/2", 1", and 2" and the materials principally 

tested were A441 and RQ100-B structural steels. The chemical and 

physical properties of these two steels are shown in Table 1. The 

RQlOO-B structural steel is a Bethlehem Steel product which was given 

a special heat treatment for this program to provide a yield strength 

of about 80 ksi, rather than 110 ksi, as would be normal for the 

commercial product. 

2.2 Specimen Preparation 

All the specimens were saw-cut from the original 6 ft. by 

4 ft. plate similar to the pattern shown in Fig. 5. In the saw-cutting 

process any heat-affected regions were removed from the test specimens. 

All of the specimens were saw-cut ~ith their long dimension 

in the rolling direction. This resulted in a crack toughness character

ization pertaining to crack motion perpendicular to the rolling direction 

of the steel. This direction was studied because the resistance of the 

steel to crack propagation in this direction is higher and more uniform 

than for crack motion parallel to the rolling direction. Besides, in 
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structural applications the rolling direction is usually made to 

correspond to the direction of largest tension. 

After the individual test specimens were saw-cut from the 

plates the top and bottom surfaces of the specimens were shaped to 

assure parallel surfaces. This was done to assure specimen stability 

during the fatigue cracking process. The sides of the specimen were 

surface ground to assure a uniform thickness throughout an individual 

specimen. This was required for the thickness reduction technique 

of evaluating K • The tolerance in the thickness direction was 
c 

± 0.001 in. A 90° Chevron notch was machined in the center of the 

specimen as shown in Fig. 6. The recommended angles of taper, a, for 

0 0 0 the notch are 45 , 45 , and 29 respectively for the 1/2", 1", and 2" 

thicknesses. The Chevron notch was used to help initiate crack growth 

in the fatigue process. 

The fatigue crack growth was done on a 10-ton Amsler Vibrophore, 

which is a high frequency fatigue testing machine. The test specimens 

were placed into the machine in a three-point bend arrangement, and the 

fatigue cracking was done in two stages, a fast and a slow growth 

portion. During the fast growth stage, the crack was driven down 

into the specimen to the depth, aF. The main purpose of this fast 

growth portion was to get the crack well into the specimen in a 

short period of time. Accordingly, no fatigue cracking criteria was 

followed during this particular portion of crack growth. As mentioned 

above, the only requirement adhered to was to get the fatigue cracking 

done quickly. Approximately 20 minutes was considered acceptable. 
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The criteria followed in the slow growth portion of the 

fatigue cracking process was that the average crack growth rate over 

ilie 

per 

slow growth distance, as, be equal to or less than 1 microinch 

cycle. (S) Shown in Fig. 7 is the data used in fatigue cracking 

the A441 steel. Of importance in this data are the final K levels 

at the crack tip at the end of the slow crack growth portion. 

According to ASTM Klc testing specifications(S) on fatigue 

crack pre-cracking, the final K level at the end of the fatigue crack 

should be equal to or less than one-half of the expected K value 
c 

resulting from a fracture toughness test. However, there is still some 

disagreement as to the necessity of the ASTM fatigue pre-cracking 

requirement. Furthermore, our method of pre-cracking (1 microinch 

per cycle) was above the ASTM rule only for the low testing temperatures 

which were of secondary interest to the project. 

In many instances during the fatigue cracking process the 

crack in the test specimen tended to grow faster on one side than on 

the other. In order to straighten out the crack leading edge a steel 

wedge was forced into the machine notch on the side of the specimen 

where the crack was longer. This prevented the longer side of the 

crack from cycling through the complete stress range, thereby slowing 

its growth rate, while allowing the other and shorter crack to continue 

to grow. When the edges of the crack reached equal length on both 

sides of the specimen the wedge was removed and the regular fatigue 

cracking process was continued. 
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The dynamic fracture tests were done in a drop-weight tear 

test machine, shown in Fig. 8. The main uprights of the machine are 

two Wl2X85 columns to which are bolted fabricated t·ee~sections along 

which the drop-weight rides. The bolts allow for realignment of the 

rail system. The drop-weight machine has a drop-height capacity of 

approximately 20 feet. There are side grooves in the drop-weight 

which cause it to ride along the web of the tee-section. A close 

tolerance of 1/16 in. exists between the falling weight and the rail 

system so that upon release there is negligible "wobbling'' or locking 

of the weight .along the rails. 

The weight of the falling mass is 400 pounds. The original 

weight, 200 pounds, was doubled in size in order that lower drop-heights 

could. be used in the dynamic tests to impart the same amount of energy 

to the test specimens as would a smaller weight falling from a greater 

height. This was done to help lessen the influence of the test 

specimen's inertia on the load record. The additional weight also 

doubled the energy capacity of the drop-weight machine. The original 

weight was increased by bolting onto it two plates weighing approximately 

100 pounds each. These plates were set on opposite sides of the 

original weight. 

The drop-weight is raised and lowered to the required drop-

heights by means of a 2-ton overhead crane. Once the weight has been 

posi~ioned at the required elevation above the test specimen it is 

release.d by an electome~:gnetic release mechanism. After the weight 
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At the bottom of the drop-weight is the tup which serves also 

as the load dynamometer. The tup is positioned snugly in a recess at 

the bottom of the weight and is fastened into place by a long bolt 

passing vertically through the weight to its top. The tup is the load 

measuring part of the test apparatus, and it is shown in Fig. 9. The 

load dynamometer is machined from 4340 maraging steel and it is heat 

treated to Rc 50. Two four-arm bridges are instrumented onto the tup 

with a 500 ohm strain gage passing across each arm of the bridge. 

The resistance of the gages were increased from 240 ohms in order to 

give the load signal greater sensitivity. Two bridges were placed on 

the tup as a precautionary measure in case one bridge failed in 

operation by shearing off due to the repeated shock loadings. A four

arm bridge is used to measure the axial load in the dynamometer, and 

by its very use any bending that might occur in the tup upon impact 

with the test specimen is removed from the load signal. 

As an aid in decreasing the influence of the specimen's inertia 

on the load record, 3/4 in. long, 1/2 in. diameter half-rounds were 

used during each drop-weight fracture test; The positon of the pad 

relative to the test specimen is shown in Fig. 10. When the tup makes 

contact with the half-round, a considerable amount of deformation 

occurs in the pad with a corresponding large amount of energy absorption. 

This cushions the application of the load onto the test specimen and, 
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· as a result, stretches out the loading time. The half-round cushions 

were machined from drill rod. 

The loading dynamometer has a 147° included angle ground into 

its tip. The original shape of the tup's tip was a semi-circular. 

The mild-angled tip was used in this program as to reduce the 

cushion's resistance to initial deformation. 

The load signal is recorded on a Tektronix Type 549 storage 

oscilloscope with a "Type-Q Transducer and Strain Gage Preamp Plug-In 

Unit" used to monitor the signal. This particular oscilloscope is 

equipped with a delay mechanism whereby the start of the trace can be 

delayed for a specific time interval and then started and stored on 

the oscilloscope screen. It was because of these requred features that 

this oscilloscope was obtained by Madison(J) and Luft(4) for use 

in the drop-weight tear tests. 

A photocell is attached to the drop weight machine, as shown 

in Fig. 8, and when.the weight is released and starts its free fall, 

a shutter attached to the drop-weight breaks the light beam of the 

photocell and sends a triggering signal to the oscilloscope to 

initiate the sweep of the trace. Depending on the drop-height of the 

particular test, a corresponding particular delay time is set on the 

oscilloscope's delay mechanism. When the triggering signal is 

monitored by the oscilloscope the delay mechanism is activated, and 

when the set delay time passes, the load signal from the four-arm 

bridge of the tup is recorded and stored on the oscilloscope. The 

intention of the delay mechanism is to set as the delay time the time 
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required for the drop weight to pass the photocell and make contact 

with the test specimen. In this way the trace recorded on the 

oscilloscope will show a record of the load in the tup beginning 

with first contact against the test specimen. These delay times vary 

depending on the initial height of the drop-weight before release. 

These times were initially measured by a method of trial whereby the 

weight was dropped onto a solid bar from a definite prescribed height 

and the delay times were varied until the load signal was properly 

recorded on the oscilloscope. A Polaroid camera is used to take a 

picture of the load signal stored on the oscilloscope screen in order 

to have a permanent record of each fracture test • 

. On the surface of the test specimens opposite the Chevron 

notch a 1/16 in. diameter hole was drilled 3/4 in. deep into the 

specimen at the center-thickness, offset 1 inch on either side of the 

plane of the notch. Into this hole was placed a chromel-alumel 

thermocouple which provided for the recording of the specimen temperature 

before each test. The specimens were heated in an oven or cooled in a 

household refrigerator, in a deep freeze, or by means of dry ice 

depending on the required test temperature. 

2.4 Test Apparatus- Thickness Reduction Type K Tests 
c 

In the thickness reduction technique a Gaertner Series Mll80 

traveling microscope was used to measure the thickness reductions on 

slices cut from the fractured specimens. The microscope has a range 

of 2 in. and can read directly down to 0.0001 in. Since thickness 
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(or thickness reduction) measurements were required at different normal 

separations from the brittle or flat portion of the fracture surface, 

calibrated moveme~t perpendicular to the fracture surface, or in other 

words, movement perpendicular to that furnished by the microscope 

travel was required. To furnish this the shimming assemblage shown 

in Fig. 11 was~machined, assembled, and mounted to the base of the 

microscope. This setup allowed for movement in 0.005 in. increments 

away from the fracture surface and perpendicular to the thickness 

direction. 

To aid in these thickness reduction measurements slices were 

saw-cut from the fractured specimen. These slices furnished two sur

faces whose edges corresponded to the thickness or thickness reduction 

profile at specific locations away from the end of the fatigue crack. 

These slices conveniently fitted into the shimming assemblage, as 

shown in Fig. 11, for thickness measurements. 

2.5 Test Procedure for Dynamic K c 

On the day previous to testing, the specimens to be tested 

were placed in the required test-temperature atmosphere and were allowed 

to stay in this temperature for 12 hours or more. This assured uniform 

temperature distribution in each specimen. At this same time the 

thermocouple was placed into one of the ~specimens to be tested so that 

the temperature levels could be monitored. 
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On the day of testing the oscilloscope was switched on first 

so that it had ample time to heat. The load signal originating from 

the four-arm bridge on the load dynamometer was zeroed in on the 

oscilloscope screen and calibrated. During this process the drop-weight 

was suspended, assuring no load in the tup. The photocell was checked 

by passing an object through the light beam to see if it was triggering 

properly. The electromagnetic release mechanism's circuit was also 

switched,on and checked. With the safety pin inserted in the release 

mechanism, the release button was pressed to check if the system was 

operating correctly. The safety pin prevented the release of the drop

weight once it had been raised from its resting position on the shock 

absorbing supports. Just before the actual fracture test the safety pin 

was removed. 

Knowing the testing conditions - temperature, specimen size 

and yield strength - the general results of the particular test were 

estimated based on the experience acquired from previous tear-tests. 

Having some idea of the general outcome of the test a sufficient drop

height was selected. The height was kept near the minimum necessary to 

induce fracture upon impact of the drop-weight onto the test specimen. 

This practice also tended to reduce the test specimen's inertial effect 

on the load record. After the drop-height was selected a corresponding 

delay time was set on the oscilloscope. Also, having some general idea 

of the expected fracture load, the magnitude of the intervals on the 

ordinate axis of the oscilloscope screen was set. 

After all systems were checked and found to be functioning 

properly, a final temperature reading was taken of the test specimen. 
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The temperature was recorded, and the specimen was immediately placed 

onto the test fixture of the drop-weight machine. The specimen was 

aligned so that the load dynamometer would hit the specimen directly 

over the fatigue crack. Then the required number of half-round cushions 

were placed on the specimen. The number of cushions varied depending 

on the expected magnitude of the fracture load. The safety pin was now 

removed from the release mechanism, and the drop-weight was raised to 

its required height. After reaching this height the drop-weight was 

released immediately and the test specimen was fractured. Except in 

the case of occasional maladjustments of the electronic equipment, a 

load-time signal was recorded and stored on the oscilloscope screen. 

A Polaroid photograph was taken of the trace. 

The two halves of the fractured specimen were removed from 

the drop-weight machine and brought to room temperature. After the 

fracture surfaces were cleaned and dried by use of a compressive air 

jet, a thin coat of a clear acrylic lacquer was sprayed onto the 

surfaces to act as a protective coating. 

Since each dynamic fracture test required approximately one 

minute to complete once the specimen was taken from its test-temperature 

atmosphere, no facilities were used to keep the specimen in its test

temperature atmosphere while seated on the dynamic test fixture. Any 

temperature gradient within the test specimen was assumed negligible. 

Knowing the test temperature and the loading time for each 

test specimen, their effects on the yield strength of each specimen 
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considered, and a dynamic yield strength was calculated. By means of 

an equation for K, developed by Gross and Srawley for three-point bend 

specimens and revised by Madison(
3

) and Luft(4) for the Lehigh specimen, 

a K value was estimated using the maximum recorded load as the fracture 
c 

load. 

2.6 Test Procedure for Thickness Reduction Type K 
c 

A number of the dynamically tested specimens were measured for 

thickness reduction. One-half of the fractured specimen was selected 

and a slice was taken from it as shown in Fig. 12. The saw-cuts were 

made so that the slice represented the measurement positions, B/2 and 

3B/4, away from the end of the fatigue crack. These slices were also 

wet ground to remove the rough edges resulting from sawing. The edges 

of each slice were also gently finished with a fine emery cloth to 

remove burrs resulting from the grinding. This resulted in true 

thickness contours at the measurement positions. The slice was now 

ready for thickness reduction measurements. 

Before any measurements could be taken the microscope was first 

aligned as perfectly as possible with the shimming assemblage which was 

mounted to the base of the microscope. This meant that the microscope 

travelled parallel to the edges of the assemblage and perpendicular 

to its sides. The slice was then placed on the sliding measuring 

platform and clamped in position, as shown in Fig. 11. With the turn-

screw in its loosened position the sliding platform was manually pushed 

back and forth, while the edge of the slice was aligned with the 
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y-direction crosshair of the microscope. This guaranteed that the slice 

was positioned parallel to the four sides of the shimming setup. 

The turnscrew was tightened with no shims. The microscope was 

then moved until its x-direction crosshair was aligned parallel to a 

"weighted" fracture surface or zero position. The word, "weighted", 

is used because the unevenness of the actual fracture surface required 

judgment in the selection of an average position. This movement of the 

microscope in aligning the x-direction crosshair does not hamper the 

other fixed alignments. The steps in the alignment of the microscope 

and slice are illustrated in Fig. 13. 

The first estimate of ry and, in tur~Kc from thickness reduction 

pertained to a depth of B/9 from the fracture surface. Being unable to 

measure exactly at this distance away from the fracture surface, 

measurements of thickness were made at distances slightly larger anq 

smaller than the value of B/9. The thickness at the gage position B/9 

was linearly interpolated between the two measured distances. Assuming 

the measured thickness reduction equal to the crack opening stretch, o, 

the corresponding plastic zone size, ry, was calculated and the ratio 

of ryfB was evaluated. A new measuring position away from the fracture 

surface was now calculated knowing the ratio of ryiB from the previous 

measuring position. At this new position the thickness was again 

measured; a thickness reduction was found; ry was re-evaluated using o . 

equal to this new thickness reduction; and a new ratio of ry/B was 

again calculated. Using this newly calculated value of ry/B another 

measuring position was found. This process was repeated until there 

was a convergence of the previous and newly calculated positions in a 



particular step. When this occurred the o value pertaining to this 

"equilibrium" position was used to find the "effective" K value. c 

An example of the measuring procedure is given in Appendix 1. 
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The measuring procedure is made easier once the first position, 

B/9, and the second measuring position are known. These positions 

correspond to the values of S in line 1 and 2 of Appendix 1. These 
n 

two positions are the maximum and minimum distances at which thickness 

reduction measurements will be required. Since the equilibrium 

position will have to lie somewhere between them, a group of thickness 

reduction measurements are first made covering this entire range. This 

is done using the 0.005 in. thick shims, and this is shown in the top 

half of the sample calculation of Appendix 1. This allows the 

converging process to be handled quite easily, and this is shown in 

the bottom half of Appendix 1. 

Now that the test procedure has been described, a few additional 

words are needed concerning the previously described slicing procedure. 

In this procedure it was explained how a slice was removed from one-half 

of the fractured specimen. Care should be taken in selecting the proper 

half to use for the slice. That half of the specimen should be used 

which retained both shear lips upon fracture. The typical slice in 

Fig. 12 is an example of such a selection. This type of slice permits 

the measurement of the thickness below the fracture surface because of 

the physical presence of the shear lips. 



If the shear lips are shared between both halves, personal 

judgment should be used in selecting which half of the specimen to 
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slice. If this situation is so pronounced that thickness measurements 

are not possible across the slice because of the absence of material 

at one edge of the slice, a different measuring procedure is required. 

This missing material corresponds to the shear lip existing on the 

other half of the fracture specimen. For this situation the measuring 

procedure is exactly the same except that the slice is shimmed so that 

measurements can be made at equal distances above and below the fracture 

surface or zero position. In other words thickness measurements are 

taken above and below the fracture surface at equal distances, and the 

measurements are made from the centerline of the slice out to the edge 

of the slice where the shear lip exists. The total thickness for a 

particular distance away from the fracture surface is, therefore, taken 

to be the sum of the two half-thickness measurements made above and below 

the fracture surface at the same distance. The centerline of the slice 

must be physically scribed onto the slice for this method. The remaining 

measurement steps are the same. 

2.7 Test Procedure for Bend-Angle Type K c 

In several of the drop-weight tear tests the test specimen failed 

to fracture completely due to its high degree of toughness at near room 

temperatures. The drop-weight was usually at its maximum safe operating 

drop-height for such a test. This maximum safe height was decided to be 
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10 feet, and a greater height was not used in fear of damaging the load 

dynamometer or the strain gages instrumented onto it. 

After such a test the partially fractured specimen was removed 

from the drop-weight machine, and the bend angle, ~. was measured by 

means of a protractor. The specimen was then placed into the deep 

freeze or in contact with dry ice. After being in this cold atmosphere 

for several hours it was again placed into the drop-weight machine 

where the fracture of the specimen was completed. No data was required 

during this second drop. Its purpose was just to complete the break 

of the specimen. As before the broken specimen was warmed to room 

temperature, dried, and the fracture surface sprayed with the protective 

lacquer coating. 

Inspection of the fracture surface of the broken specimen 

clearly distinguished to what depth the crack moved during the first 

drop of the weight at the warmer temperature. The remaining ligament 

cross-section was more brittle in texture compared to the ductile 

failure plane of the initial drop. This difference in appearance easily 

led to the location of the final crack arrest position resulting from 

the first drop and accordingly showed the cros~section of the 

previously unbroken ligament. Since the final crack arrest position 

was never perfectly straight, a "weighted" straight position was 

selected along the actual arrest edge. Having determined the dimensions 

of this "weighted" cross section, its depth was halved, and this 

position was assumed to be the axis of rotation of the plastic hinge. 

Now knowing this positio~ and the bend-angle resulting after the first 
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drop of the weight, the crack opening stretch, ~' value was calculated 

using simple geometry, Fig. 14, according to the following equation 

L. 
L~g 

~ = ( -2- + A. n ~ E 
n + 1 '"4Ci"" ) .f3 

YS 

(10) 

where ~ is in radians. The second term in the parentheses was included 

as an adjustment in locating the elastic-plastic interface, the location 

for the ~ definition. The "effective" Kc value was calculated using 

Eq. (9). 



3. THEORETICAL ANALYSIS 

3.1 Experimental Analysis for Dynamic K c 

Using a boundary collocation technique Gross and Srawley 
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developed an expression for K for single-edge-cracked plate specimens 

in three-point bending. (8) This expression for K is represented by 

a fourth degree polynomial of the following form, with values of 

the coefficients Aw furnished for .values of a/w up to 0.6: 

(11) 

where 

Y = dimensionless ratio 

B = specimen width 

W = specimen depth 

P = applied load 

L = span length 

a = effective crack length 

A = coefficients whose values are dependent on the 

specimen's L/W ratio 

The coefficients for the above equation have been developed for L/W 

ratios of 8 and 4 and are shown in Fig. 15. 
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Since the same three-point bend configuration was used in the 

dynamic fracture tests, the above K calibration was employed for the 

solution of the dynamic K values. However, due to a specimen length
c 

to-width ratio of 3.33 which was the L/W ratio used in this program, 

a different set of coefficients, other than those developed by Gross 

and Srawley, had to be derived for use in Eq. (11). 

This new set of coefficients was obtained(4) by simply linearly 

extending those values of Aw recommended by Gross and Srawley to the 

L/W value of 3.33. The results of this extension are presented also 

in Fig. 15. As a check, a compliance calibration was made for the bend 

specimen whose L/W ratio was 3.33 and it was shown that the above linear 

' . (4) 
extension of the Gross-Srawley data was valid. 

3.2 Mathematical Solutions for Dynamic Kc 

Using the equation for the plastic zone size, ry, Eq. (7), in 

an adjusted form 

(12) 

and substituting this expression into Eq. (11) results in 

= (13) 

Letting 

(14) 
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Eq. (13) can be rewritten 

(15) = B2 2 4 F 
crYS W 

Next dividing both sides of Eq~ (15) by an arbitrary constant, Q, results 

in 

(16) 

Using Eq. (16) Fig. 16 illustrates the graphical technique that 

may be employed to solve for K or K • Figure 16 is a plot of Eq. (14) 
c 

with F versus (a/W). The technique involves the solution of two 

similar triangles. Once the value of (ry/W) is scaled off the graph 

and ry is known, a value of K can be evaluated using Eq. (12). ·The 

value of K becomes K when the applied load, P, used in the solution c 

is the fracture or maximum load recorded during the drop-weight tear 

test. 

Due to the length of time required in such a graphical solution 

when many specimens are involved, a computer program was developed to 

solve for the values of K • A simplified flow chart of the computer 
c 

program is shown in Fig. 17. Essentially the method of solution 

involves an iterative process where a value of (ry/W) is assumed, and 

this value is used, in turn, to calculate another (ry/W) value by means 

of Eq. (13) remembering that 

a ry 
Q = ....£ +·(-) 
W W W assumed 
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When the difference between the assumed ·and calculated values of (ry/W) 

is equal to or less than 0.0001 inches the iterative process is stopped 

and a K value evaluated using Eq. (12). The computer solution was the 

method used in all the K computations. 
c 

Table 2 lists the K values that resulted from the dynamic 
c 

drop-weight tear tests on the A441 and RQ-lOOB structural steels. Graphs 

of K versus temperature for both the structural steels are shown in 
c 

Figs. 18 to 22. 

3.3 Dynamic Yield Strength 

In the previously discussed solutions for the dynamic K values, 
c 

the value of the yield strength, crYS' appeared in several of the 

equations. As a result a knowledge of the change in the yield 

strengths of the materials tested with differing test conditions had 

to be acquired. 

In the drop-weight tear tests the rate of load application 

onto the test specimens was very high resulting in very high strain 

rates in the material. Also the test temperatures of the specimens 

varied from a high of approximately +150° F to a low of about -80° F. 

Both the high strain rates and the changing test temperatures have an 

effect on the yield strength of each particular test specimen. 

A test program investigating the dynamic yield conditions of 

the different materials could have been undertaken, but this was 

considered simply outside the capacity of the program. Instead the 

following empirical expression was used: 



where 

+ 174,000 ksi _ 27 _4 ksi 

log(2 x l0
10

f)(T + 459) 
(17) 

t = loading time to maximum load 

t = time of load application for a static test (SO sec.) 
0 

T testing temperature in °F 

This expression was suggested by Irwin(9) as a best fit for data on 

A302B Steel from Ripling and for data on 3-Ni-Cr forging steels for 
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Wessle. It takes into account both the strain rate and the material 

temperature on the yield strength. This equation is considered to 

furnish best fit conditions for any structural steel whose static 

yield strength is not greater than approximately 120 ksi. Madison(3) 

and Luft(4) showed that A441 steel behavior agreed approximately with 

this equation. 

3.4 Investigations into a Typical Load Record Response 

Figure 23 shows a sketch of a typical load record. This is 

a depiction of the load signal as it is recorded and stored on the 

oscilloscope after each successful fracture test. 

The sketch includes two different types of load response, one 

represented by the solid curve and the other by the dashed curve. The 

solid line depicts a load record resulting when the half-round steel 

cushions are used during the fracture test. These cushions stretched 

out the loading time, from zero to maximum load, to approximately 0.5 

to 1.5 milliseconds. These loading times resulted in values for the 

inverse of loading time (1/t) which guaranteed load responses that would 

lead to minimum K levels (Fig. 4). During this loading period a 
c 
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change in slope was witnessed in the load record. It is believed that 

during the initial period of loading or when the slope of the curve is 

less severe, deformation of the cushion was progressive with an increase 

in load. At the change in slope, the pad material had strain hardened 

enough to prevent further deformation. The maximum recorded load was 

taken as the fracture load, P , which was used in all the K c c 

calculations. After reaching maximum load, the load record fell off 

either sharply or gradually, depending on the severity of the type 

of fracture. 

In a majority of the load records, oscillations were found to 

exist that were periodic in nature, as shown in Fig. 23, and so a study 

was made into the possible sources of vibration in the test setup during 

a drop-weight tear test. The oscillations were observed after the 

maximum load and while a load was still being applied to the test 

specimen. It was felt that vibrations were interacting with the actual 

fracture process because the drop-weight was actually fracturing the 

specimen during this time period. The results of the study of 

expected vibration time periods is shown in Fig. 24. 

First investigated was the reflected wave motion in the drop-

weight caused by its initial sudden contact with the test specimen. 

This wave motion corresponds to the travel of a compression wave up 

from the tup to the top of the weight where it is reflected back down 

to the tup as a tensile wave. The period for one such complete cycle 

was calculated to be 2.3 x 10-4 sec. 



-34 

Investigated next was the bending response of the test specimen. 

In these calculations the specimen was considered to be a spring with 

the 400 lb. weight vibrating above it. The spring constant for the 

specimen was calculated taking into consideration the crack in the 

-3 
specimen. The period for this response was found to be 8.4 x 10 sec. 

These vibrations never could appear on the trace because within this 

relatively long time period the fracture of the test specimen occurs 

almost immediately, destroying the integrity of the specimen and the 

source of any vibrations. 

The last type of vibration investigated was the shear wave 

motion in the test specimen. This study is directly analagous to the 

reflected wave motion in the drop-weight, described previously, except 

that in this instance the path of travel of the reflected wave is from 

the center of the test specimen, where the tup strikes, to either of 

the specimen's supports and back to the center. The wave motion involved 

is a shear wave motion and can be regarded as a high frequency contri-

bution to bending of the specimen. The period for this complete cycle 

-4 was calculated to be 0.8 x 10 sec. 

Measuring the period of the oscillations visible in the load 

records resulted fn a period whose value was approximately 4.0 x 10-4 

sec. This value is in reasonable agreement with the calculated value of 

the period for the reflected wave response. In fact it is felt that 

these oscillations do originate from these reflected waves, and that 

the difference that does exist between the calculated 'and measured 

values of the periods is .believed to be caused by some dampening 

originating in the two additional plates that were bolted onto the 
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drop-weight. These are the plates that were attached to the original 

weight in order to increase its weight up to 400 lbs. No other 

vibrations of significant size could be found on the test records. 

If the half-round steel cushions are not used during a fracture 

test, the resulting load record is depicted by the dashed curve in Fig. 

23. The shape of the rising portion of the curve is similar to that 

when a pad is used. Some cushioning resulted from the indentation of· 

the tup into the test specimen. The change in slope may be caused by 

the strain hardening of the deforming material under the tup. The 

loading time for this type of load record corresponds nearly to the 

shear wave period and represents the main inertial response of the 

test specimen to the rapidly applied load. This load record cannot be 

regarded as valid because it is elevated by the inertia of the test 

specimen. Studies by Madison( 3) and Luft(4) indicated that the second 

load maximum was in approximate agreement with the bending moment 

in the specimen, measured directly by strain gages on the specimen. 

However, in the tests reported here this "second maximum" technique 

was not employed. 

3.5 Experimental Analysis for the Thickness Reduction Type K . c 

In an attempt to formulate a plasticity oriented fracture 

toughness characterization procedure, several of the elastic-plastic 

theoretical models having an elastic-plastic behavior in the presence 

of a crack have been investigated. It was found that.as the ratio 

of the net section stress to yield stress increased towards unity a 
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constant proportionality was maintained between the square of the ry 

corrected K value and the crack opening stretch, 6, Fig. 1. This 

suggested that in the region of general yielding the plastic strains 

in the vicinity of the leading edge of the crack remained proportional 

2 
to K • 

Direct measurements of crack opening stretch were not 

attempted in the dynamic fracture tests because of the instrumentation 

difficulties involved in such a task. However, success has been 

registered by laboratories in correlating the crack opening stretch 

to the thickness reduction adjacent to the crack tip when the thickness 

reduction was greater than one mil. These results showed that a 

proportionality existed between the 6 values and the thickness 

reduction measurements when these measurements were made at the deepest 

point of thickness contraction at the crack tip. The constant of 

proportionality was nearly unity. 

In the dynamic fracture tests it was reasoned that the K values· 

driving the crack initially increased until the critical K was attained 

with the increase in load up to P • At this critical value unstable 
c 

crack growth began, and the K level continued to increase with increased 

fracture surface roughening untii the limiting plateau value, KM, was 

attained. This reasoning is consistent with the R-curve concept as 

discussed earlier. 

These considerations were supported by a thickness reduction 

study made on several of the test specimens after fracture. This study 
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resulted in thickness reduction contours ahead of the fatigue crack which 

corresponded to the above R-curve reasoning. The initial contours 

developed rapidly ahead of the fatigue crack position attesting to the 

sharp increase of material toughness and its unwillinghess to fracture. · 

This region of sharp contour development is analagous to the rising 

portion of the R-curve where the plastic zone develops with some small 

stable crack growth. As the contours further developed they gradually 

levelled off to constant positions, and this was where it was felt that 

the crack was moving at the plateau, ~' level, simi~ar to the shelf 

or plateau of the R-curve. These considerations suggested that the 

magnitude of the thickness reduction some distance ahead of the initial 

crack tip where the contours are uniform may serve usefully as a 

. measure of the plateau value of K on the resistance curve or of an 

"effective" K value. c 

3.6 Empirical Solutions for Thickness Reduction Type K c 

Based on the physical reasoning several empirical thickness 

reduction measurement techniques were attempted in order to formulate 

a fracture toughness characterization in the area of general yielding. 

A slice was removed from either half of the fractured specimen so that 

its surfaces were perpendicular to the brittle portion of the fractured 

surface and so that these same surfaces corresponded to distances, 

B/2 and 3B/4, ahead of the final fatigue crack position. These distances 

were selected so that measurements of thickness reduction made along 

these surfaces would cor~espond to a region along the test specimen 
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where the thickness reduction contours were in the leveled off .position. 

Two positions seemed desirable to employ for the measurements for 

averaging purposes. 

A surface further away from the fatigue crack and a larger 

separation between surfaces would have been preferred so as to insure 

measurements of thickness reduction in the region of uniform contours, 

and, in turn, constant K levels. However, there were two physical 

limitations prohibiting these choices. First of all the load usually 

tended to expand the specimen where it made compressive contact so that 

the thickness reduction measurements in this region had to be avoided. 

Secondly the positions selected had to accommodate all the plate-

thicknesses tested. In regards to these points, the validity of 

the 3B/4 position in the 2" specimens was destroyed by the bulging 

of the material caused by the tup, and so only one surface was used 

for the K computations. 
c 

The first technique attempted called for measuring the thick-

ness reduction at distances away from the brittle portion of the 

fracture surface and evaluating the respective ry values for these 

positions. Using the hypothesis that the thickness reduction equaled 

the crack opening 'stretch the position was found which equalled one-half 

of ry calculated for that particular position. This position was 

selected as the balanced point in the measuring procedure, and the ry 

values corresponding to this location was used to evaluate the K 
c 

value for the specimen. This procedure, however, failed to function 

properly for all the plate thicknesses of A441 steel, and accordingly 

it was abandoned. 
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The second attempt called for equating the thickness reduction 

to the crack opening stretch at a distance, S, away from the brittle 

or flat portion of the fracture surface where S, the new balanced 

position, is given by 

r 
S = .!. B £ (_x) 

3 B 
(18) 

where 

(19) 

The above function of ry and B reaches a maximum value of one-third 

when ry equals B. For any values of ry/B greater than ~Eq. (19) 

was ignored, and the term, f(ry/B), was assumed to remain constant at 

a value of one-third. This second technique and the values resulting 

from its use are depicted in Figs. 18 to 22. This is also the 

technique used in the sample calculation of Appendix 1-. 

Briefly referring to the K values obtained from the 
c . 

thickness reduction technique,a plot of these K values versus temperature 
c 

should be displaced somewhat above the curve obtained from the dynamic 

K values in the region where the two methods overlap because the c 

thickness reduction K values refer to the plateau value on the 
c 

resistance curve as opposed to the smaller but true K values 
c 

corresponding to the points of tangency of the G and. R curves in the 

dynamic K values. The point of tangency represents the point of crack c 

instability and the start of the rapid fracture process. 



3.7 Experimental Analysis for the Bend-Angle Type K c 
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As a second attempt in formulating a plasticity based fracture 

toughness characterization a bend-angle type of K measurement procedure 
c 

was explored. As in the thickness reduction technique it was reasoned 

that in the dynamic fracture tests the K value driving the crack 

increased until the critical K level was attained whereupon unstable 

crack propagation began. Again the K level increased to the plateau 

value with increased fracture surface roughening. However, due to a 

lack of available energy caused by an insufficient drop height the 

fracture process ceased and the crack arrested. Resulting was a 

partically fractured specimen with a measurable bend-angle, S· 

Using these considerations it was felt that the K level 

corresponding to the crack arrest would represent the plateau value 

since it was at this value that the crack was propagating when it 

arrested. Accordingly it was reasoned that the K value resulting from 

any bend-angle type computation would be a plateau value. 

The bend-angle technique consisted in measuring the bend-

angle after the initial partial fracture; completing the fracture of 

the specimen at a very cold temperature; measuring the depth of the 

net ligament resulting from the first drop and calculating the crack 

opening stretch, o, using simple geometry. The specimen was assumed 

to rotate about a plastic hinge whose center of rotation was at the 

middle of this net ligament. The o value was calculated at the elastic-

plastic interface, where o is defined, and for this reason a correction 

term had to be included in the calculations. This correction was 
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taken from Mode III (shear) displacement theory, and for this reason 

there is uncertainty in how it should be applied to the Mode I (tensile 

or opening) displacement condition. To allow for this uncertainty 

an arbitrary constant, A, is introduced. Its value will need to be 

determined by calibration experiments, but preliminary results indicate 

that it should be between 0 and 1 in order to produce reasonable 

results, as one would a priori expect. The initial results of the 

bend-angle technique are presented in Fig. 25 for A514 2" plate. 

In such a procedure it was hoped that the crack propagated 

through at least one-half of the original cross section. This assured 

that the arrested K value was on the plateau of the R-curve. A smaller 

crack movement could not assure this, while too large a movement might 

result in excess plastic deformation of the small net ligament after 

crack arrest,ten~ing to produce larger S values than wished for. 
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4. RESULTS AND DISCUSSION 

One portion of the program consisted in investigating and 

improving the drop-weight tear test procedure. A vibrational study 

was performed in order to find the origin of periodic oscillations 

appearing on most of the load records. This study concluded that 

these oscillations were caused by the reflected compressive-tensile 

wave motion traveling up and down the drop-weight after its initial 

sudden contact with the test specimen. The corresponding vibration 

period is small compared to the loading time and these vibrations 

appear to have no significant affect on the maximum load used for K . c 

computations. 

Several different cushioning methods intended to remove the 

"inertial" spike at the start of the load record were investigated. 

First of all increasing the weight of the drop-weight (to reduce 

the impact velocity) and adding a large-angle wedge shape to the 

striking region of the tup was ineffective toward removal of specimen 

inertia. This is understandable because the velocity decrease was 

moderate and the large included angle of the wedge permitted a very 

rapid increase of the loading force. The best results were found to 

occur when the half-round cushions of unhardened tool steel were used. 

These withstood the dynamic loading conditions satisfactorily and 

caused a sufficient decrease of loading rate so as to remove the inertial 

spike. As a result of all modifications the loading times for this 



program were increased nearly by a factor of two over the typical 

loading times for the Madison( 3)-Luft(4) testing program. 
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The graphs of Figs. 18 to 22 show the results from the present 

program in comparison to the Madison-Luft results. The immediate 

conclusion drawn from the results of the dynamic fracture tests 

performed on the A441 steel is that the data obtained by Madison and 

Luft agree within data scatter with the K values resulting from this c 

program. The results of the present program appear, however, to show 

less scatter and tend to correspond to the lower portion of the scatter 

band of Madison-Luft data. 

Similar dynamic fracture tests were performed on the RQ-lOOB 

steel and, because of its high degree of toughness in the region 

above -40° F, most of the K values resulted from the thickness 
c 

reduction technique. A delay arose in the testing of this material 

due to a dynamometer failure in the Vibrophore, the high frequency 

pre-cracking machine, and for this reason only a limited number of 

tests were completed. 

In the results for both structural steels it was evident that, 

for values of ry > 1/4 in.,the computed Kc values showed increased 

variation. In this testing region the net section of the specimen 

is approaching a general yielding condition. In addition onset of 

rapid fracturing tends to occur on the rising portion of the R-curve. 

Both circumstances would tend to cause some increase of data scatter. 
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Most of the testing emphasis was concentrated on testing 

conditions such that the net section was near or beyond a condition of 

general yielding. The primary effort of the program for this region 

consisted in use of a thickness reduction to evaluate K . Thickness 
c 

reduction measurements were made on the broken halves of the test 

specimens at the two measurement positions, as discussed previously, 

and from these measurements "equilibrium" positions were found using 

the empirical thickness reduction technique for each of the measurement 

positions. Equating the crack opening stretch to the thickness 

reduction at each of these two equilibrium positions two corresponding 

K values were calculated from these o values. The two K resultants 
c c 

were averaged and plotted in the graphs of Figs. 18 to 22. , 

The graphs resulting from the thickness reduction computations 

show a plausible variation of fracture toughness with temperature. 

This method results in a sharper increase in the resulting K values than c 

does the procedure based up~n measurements of maximum load. This is 

expected in the region of general yielding where the deformations in 

in the test specimen become very pronounced and the fracture toughness 

accordingly high. It is also observed that in the. region of overlapping 

data that the thickness reduction results for K lie above those 
c 

obtained using linear elastic fracture mechanics. This is desirable 

because, in the thickness reduction procedure, the plateau or maximum 

K value, corresponding to the shelf of an R-curve, is being measured. 

This plateau value of K or "effective" K value is somewhat higher than 
c 

the critical K value which corresponds to the initiation of unstable 
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crack growth in the test specimen and which is ·the K level computed 

from maximum load measurements. The difference between K and the 
c 

plateau value of K depends on the test conditions and the resulting 

state of stress. The difference is minimal and very close to zero in 

a K
1

c or ·plane strain type test while it is signifi_cant in the region 

of general yielding. 

The one graph, Fig. 25, presenting the results of the bend-

angle investigation on A514 - 2" plate gives some assurance that this 

measurement technique is plausible. The two data points for each of 

0 0 the temperatures, -7 F and 72 F, represent the bend-angle technique, 

and the two points correspond to A values of 0 and 1, with A = 1 

resulting in the higher values of an "effective" K . The results seem 
c 

to indicate that A should lie between these two extremes to produce 

reasonable "effective" K values. 
c '· 

As a check on the thickness reduction technique it would have 

been desirable to investigate another plasticity concept in formulating 

a similar fracture ~oughness characterization method beyond general 

yielding so that the results of both methods could be checked for 

similarity. One such technique is the bend-angle approach described 

in this report. s'everal dynamic fracture tests of double-sized test 

specimens could also be conducted in order to extend the range of 

applicability of the linear elastic solution into an area which 

contained only plasticity K values beforehand. This would be done 
c 

both as another check on the thickness reduction method and as an 

alternative procedure for toughness evaluation. 



• 

-46 

The results from the thickness reduction method agree 

satisfactorily with the maximum load K data where the two methods . c 

overlap. However, in the region of gross general yielding the accuracy 

of this technique is questionable since it was not checked with the 

results of any accurate K measurement technique. For this reason it 
. c 

is suggested that future research involving the bend-angle concept 

and the double-sized test specimens be undertaken so that the 

uncertainities of these plasticity techniques in the region of gross 

general yielding can be investigated and corrected if they are found 

to exist. In this way a fracture toughness characterization method 

will be available to calculate K over the entire spectrum of stress 
c 

conditions existing ahead of the crack from the plane strain mode of 

failure to the condition of gross general yielding • 



5. CONCLUSIONS 

As a result of the work performed in this program it is 

concluded that: 

1. The drop weight tear test procedure is a useful 

measurement procedure for obtaining dynamic values of K . 
c 

2. The oscillations appearing in the load-time records 

are a result of reflected compressive-tensile wave motion in the 

drop-weight. They have no effect on the maximum load which is used 

to compute Kc. 
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3. The best method of cushioning the rate of load application 

onto the test specimen is to use half-round cushions of unhardened tool 

steel. With the use of these cushions the resulting loading times are 

0.5 to 1.5 milliseconds. 

4. The RQ-lOOB structural steel is much tougher than the 

A441 steel with the curve of K versus temperature for the RQ-lOOB. c 

steel having a steeper slope in the transition range. 

5. The thickness reduction technique for measuring K results 
c 

in reasonable values of toughness for both steels. 

6. The preliminary studies in the bend-angle procedure 

for computing K shows good promise. 
c 

( 
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8. NOMENCLATURE 

effective crack length, in. 

increment of crack grown in fast fatigue, in., Fig. 7 

. initial crack length, in. 

increment of crack grown in slow fatigue, in., Fig. 7 

increment of stable crack growth, in. 

coefficients depending on the ratio of span length 

to beam depth, Eq.ll 

specimen thickness, in. 

reduced specimen thickness, in. 

compliance of the specimen, in./lb. 
___.--/ 

distance of travel for reflected waves, in., Fig. 24 

uniaxial tensile (Young's) modulus, psi 

shear modulus, psi 

strain energy release rate, in-ib/in. 2 

maximum strain energy release rate, in-lb/in. 2 

stress intensity factor, ksi ~in 

critical stress intensity factor, ksi ~in· 
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stress intensity factor for opening mode of crack surface 

displacement (Mode I) ksi ~in 

critical stress intensity factor for opening mode of crack 

surface displacement (Mode I) ksi ~in 

maximum stress intensity factor corresponding to plateau 

value of resistance curve, ksi ~in 



K . m1n 
minimum stress intensity factor for particular test 

conditions, ksi fin. 

-so 

KR. stress intensity factor corresponding to the values of 

the resistance curve, ksi /in. 

K' ·stiffness of the specimen, lb/in. 

L specimen's support length for dynamic fracture test, in. 

LF specimen's support length for fatigue crack growth, in., 

Fig. 7 

~ig 

M 

"weighted" length of ligament remaining intact in partially 

fractured specimen, in. 

bending moment (per unit thickness) on specimen, 

kip-in/in. 

M' mass of drop-weight, lb-sec2/in. 

n work hardening exponent, assumed equal to uniform 

elongation strain in a tensile test 

p 

p 
c 

p 
max 

Q 

r 

applied load on sp~cimen, kip_ 

cr~ticalload on specimen for crack instability, kip 

maximumload on specimen during fatigue process, kip 

arbitrary constant, Fig. 16 

radial position coordinate measured from leading edge of 

the crack, in., Fig. 1 

ry plasticity correction factor, in. 

A r y assumed plasticity correction factor in computer program, 

in., Fig. 17 

c r y calculated plasticity correction factor in computer 

program, in., Fig. 17 

' S,S ,S thickness-reduction measurement position perpendicular to· 
o n 

brittle or flat portion of fracture surface~ in. 
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t loading time to point of fracture, sec. 

T temperature, °F 

T' period of reflected waves, sec., Fig. 24 

V velocity of reflected waves, in/sec., Fig. 24 

v displacements normal to and close to the crack plane, 

in., Fig. 1 

w 

a 

9 

TT 

p 

specimen depth, in. 

measurement readings along edge of slice 

dimensionless ratio relating stress intensity factor 

to crack length . 

angle of taper. of the 90° Chevron notch 

bend-angle of a partially fractured specimen 

crack opening stretch, in., Fig. 1 

angular position coordinate measured from the apparent 

leading edge of the crack, Fig. 1 

arbitrary constant which preliminary experiments show 

to be between 0 and 1 

Poisson's ratio 

. 1 d . k. 2/· 4 mater1a mass ens1ty, 1p-sec 1n. 

nominal tensile stress on gross section, ksi 

maximum stress in the specimen using simple beam theory, 

ignoring the crack, ksi, Eq .. (A2.4) 
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aM maximum stress in the specimen using simple beam theory, 

considering the portion of the cracked section not occupied 

by the crack, ksi 

a max nominal tensile .. stress on gross section at the point of 

instability of crack extension, ksi, Fig. 3 
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crYS uniaxial tensile yield stress (yield point), ksi 

crx tensile stress component parallel to the plane of a crack 

in the x-coordinate direction, ksi 

cry tensile stress component normal to the plane of a crack 

in the y-doordinate direction, ksi 

crz tensile stress component parallel to the leading edge 

of the crack in the z-coordinate direction, ksi 

T shearing stress in the y-coordinate direction on a plane 
xy 

perpendicular to the x-coordinate, ksi 



APPENDIX 1 

SAMPLE K CALCULATION FROM THICKNESS-REDUCTION MEASUREMENTS 
c 

0 
F B = 0.9502 in. A441 Steel - 1 inch thickness, 36.5 

s B 0.1056 in. =- = 
0 9 

r = E 6 = 62.82 y 2n CJY 

s xl X B' 6 

0.110 1.0144 1.9624 0.9480 o.oo2z 
0.105 1.0146 1. 9622 0.9476 0.0026 

0.100 1.0147 1. 9618 0.9471 0.0031 

0.095 1.0149 1. 9615 0.9466 0.0036 

s 6 ry ry/B f n 

1 0.1056 0.00255 0.1602 0.1690 0.3034 
2 0.0991 0.00349 0.2192 0.231 0.3129 

0.0991 0.00318 0.2004 0.211 0.3103 

0.0983 0.00327 0.2054 0.216 0.3110 

0.0985 0.00325 0.2042 0.215 0.3108 

0.0984 
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KM = CJYS I2Tf ry = 86.0 ksi /in 

K = 71.0 ksi fin c (calculated from maximum load) 

Note: 
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APPENDIX 2 

LIMITATIONS IN TilE LINEAR ELASTIC APPROACH TO FRACTURE MECHANICS DUE TO 

SPECIMEN SIZE 

For A441 steel,_if the plastic zone is small enough so that the 

1 inch and 2 inch thick test specimens satisfy the size requirements for 

the tentative ASTM Kic method, then the Kc value must be less than 

51 ksi /in for the dynamic tests. This estimate assumes <JYS (dynamic). 

is 80 ksi and employs the equation 

0.4 in. (A2.1) 

With the A441 steel and at the temperatures of principle 

· interest, the K values lie above the one given in the preceding 
c 

paragraph. Thus in the tests of main interest to this project, 

resistance to onset of rapid fracturing is assisted by appreciable 

amounts of thickness reduction type yielding and, for analysis 

consistency, the K values include a plasticity correction. In 
c 

other words, the visual or actual crack size, a , is augmented by the 
0 

amount ry, given previously in Eq. (7). In equation form 

a = a
0 

+ ry (A2.2) 

As the ratio of ry to the crack depth, a
0

, increases beyond 

1/10, the stress intensity factor interpretation of K becomes 

increasingly inaccurate. ( 6) Nevertheless, as explained in Ref. 6 
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the ry corrected K values retain physical significance in this range 

in terms of a close relationship between K
2 

and plastic strain magnitudes 

near the leading edge of the crack. It is necessary, however, to 

recognize the region of K values corresponding to initial development 

of general yielding in order to establish a sensible limit for 

applicability of the ry corrected K value calculation method. 

For a notched-bend test specimen the equation for calculation 

of K can be written in the form 

K = cr f ra y <~> (A2.3) 

where the function Y(a/W) is available from numerical studies in the 

form of a power series truncated to the first 5 terms. (S) The power 

series form of Y(a/W) applicable to the Lehigh test specimen requires 

a moderate extrapolation of results given by Ref. 8. This adjustment 

was discussed and verified by experimental calibration in Ref. 4. 

crf _is given by· 6M/~ where M is the bending moment (per unit 

thickness) applied to the section containing the crack. In other 

words crf is the simple beam theory maximum stress ignoring the 

crack. If the same analysis is applied to the portion of this section 

not occupied by t~e crack, the maximum stress, crM' is given by 

a 
. crM = cr f ( 1 - W o ) -2 . (A2.4) 

If a is assumed to be 1.4 inches and crM, is at the dynamic yield point, 

80 ksi, the value of K is 58 ksi /"in. If a l.s still assumed to be 

1.4 inches and crM is 1. 5 times 80 ksi, .the value of K is 115 ksi /"in. 
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The second of these estimates corresponds to assuming.the 

bending moment (per unit thickness) is given by the (perfectly) plastic 

behavior equation 

(A2.5) 

or 

(A2. 6) 

where crYS = 80 ksi. Bearing in mind that constraint and work hardening 

would tend to elevate the resistance to plastic deformation, these 

estimates suggest that the limit of applicability of the ry corrected 

K method must lie in the upper part of the range from 58 ksi /in. to . 

115 ksi /in. 

An alternative method for estimating the above limit is to 

assume 
2 W- ao 

2ry = 3 ( 2 ) (A2. 7) 

This procedure is based upon comparisons to solutions for the problem 

of a central crack in a finite width plate. For this problem, assuming 

2a = W/2 and the equation 
0 

2 2 TT a 
K = cr TT a sec <w> (A2.8) 

one finds that the average stress on the net section is equal to oYS 

when 

2 =2(!!) ry 3 4 (A2. 9) 
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In applying this result to the notched-bend test, the net ligament, 

·w/4 in Eq. (A2.9), is replaced in Eq. (A2.7) by the distance from the 

crack tip to the neutral axis, (W- a )/2. 
0 

Equation (A2.7) provides 

108 ksi /in as an estimate of the K value calculation limit. When 

Eq. (A2.9) is derived using values of 2a , less than W/2, the coefficient 
0 

of the net ligament in Eq. (A2.9) is decreased and such estimates would 

lead to estimates of the calculation limit as small as 95 ksi /in. 

·From the preceding discussion, dynamic K values obtained for 
c 

the A441 steel which are below 100 ksi /in c~n be used without serious 

problems of interpretation, while K values above 110 ksi /in are 
. c 

probably too large for validity of the calculation method. For the 

RQ-100B steel, the estimates of K value calculation limits should be 

increased in proportion to the increased size of the dynamic yield 

strength of RQ-lOOB. 
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Table 1 Material Properties of Plates 

Mechanical Properties 

Plate Yield Tensile 
Thickness(in) Strength ( p s i) Strength(psi) % Elongation 

A441 1/2 56,650 83,050 27.2 in 4" 

1 55,900 82,300 

2 55,000 87,000 29.0.in 2" 

RQ-~OOB 1/2 86,575 111,452 23.5 in 2" 

1 84,075 101,090 24.5 in 2" 

2 81,105 97,125 26.0 in 2" 

Chemical Properties* 

c Mn p s Si Cu Cr Ni. Mo v 

A441 .20 1.08 .017 .• 025 .21 .23 .03 .02 .002 .051 

RQ-lOOB .16 .69 .011 .025 .26 .04 1.37 .59 

*The chemical properties presented are representative of the 1/2" 
plat!;!. Those for the 1" and 2" plates may differ moderately.· 

B 

.003 
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Table 2 Dynamic K Results 
c 

A441 i B = 1[2 in. 2 Dynamic Loading 

K c 

Maximum Thickness Reduction 
Spec. Max. 
No. Load B Temp. crYS Load at B/2 at 3B/4 Avg. 

(kips) ~in.) ~OF) (ksi2 (ksi /in) (ksi[in)(ksi/in) (ksi[in) 

A023 26.25 0.492 83.0 74.9 > 145 

A024 27.50 0.492 83.0 73.2 > 145 

A025 12.00 0.493 - 8.0 84.6 61.3 

A026 14.50 0.486 - 8.0 84.0 79.6 

A029 18.00 0.483 32.0 78.7 124.6 187.7 163.5 . 150.6 

A030 22.00 0.476 32.0 78.7 > 145 

A031 18.50 0.482 14.0 81.0 126.1 120.9 125.9 123.4 

A032 17.50 0.476 14.0 81.0 112.8 122.1 129.9 126.0 
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Table 2 Dynamic K Results (continued) c 

A441, B = 1 in., Dynamic Loading 
K c 

Maximum Thickness Reduction 

Spec. Max. Load at B/2 at3B/4 Avg. No. Load B Temp. <JYS 
(kips) (in.) (OF) (ksi) (ksi/"in) (ksi/"in) (ksi/"in) (ksi(in) 

All4 30.00 0.935 154.0 69.8 > 125 435.9 450.8 443.4 

All9 33.00 0.964 81.0 73.6 > 125 

Al20 24.50 o. 970 81.0 73.5 > 125 

Al21 20.00 0.971 32.0 78.2 73.9 78.1 84.5 81.3 

Al22 20.00 0.970 32.0 78.3 75.4 

A124 11.25 0.977 -80.5 92.1 39.4 

Al25 15.00 0.976 7.7 79.3 51.0 

Al26 13.25 0.974 -35.5 91.7 45.2 

Al27 12.50 0.936 -44.5 86.7 43.3 

Al28 15.75 0.971 7.7 79.0 55.1 

Al29 15.38 0.955 7.7 79.1 55.1 

Al31 9.50 0.967 -62.5 91.5 32.4 

Al34 24.00 0. 971 72.0 73.5 111.3 .... 

Al35 21.00 0.977 72.0 73.0 83.8 

Al39 25.50 0.967 72.0 71.9 > 125 

Al40 25.50 0.961 72.0 71.9 > 125. 

Al42 19.00 0.950 36.5 76.0 71.0 

A143 30.00 0.968 72.0 72.5 > 125 

Al44 26.50 0.978 72.0 72.7 > 125 

A145 23.00 0.957 72.0 73.5 104.7 218.5 246.4 232.5 

Al46 22.50 0.948 72.0 74.1 105.4 

A147 20.00 0.982 72.0 77.8 73.8 

Al49 26.00 0.985 72.0 72.4 > 125 

AlSO 16.50 0.964 72.0 75.8 71.0 

A153 18.50 0.960 72.0 77.8 67.8 
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Table 2 Dynamic K Results (continued) c 

A441, B = 2 in., Dynamic Loading 

K c 

Maximum Thickness Reduction 

Spec. Max. Load No. Load B Temp. crYS at B/2 at 3B/4 Avg. 

(kips) (in.) (OF) (ksi) (ksij1n) (ksi/in) (ksi/in) (ksi/in) 

A223 36.50 1.956 83.0 73.2 102.7 

A224 36.50 1.956 83.0 73.2 102.8 

A225 21.00 1.955 - 5.8 83.2 48.1 

A226 21.00 1.955 - 5.8 83.2 48.3 

A229 55.00 1.958 188.0 67.5 > 119 267.3 267.3 

A230 52.50 1.942 160.0 69.9 > 119 237.0 237.0 

A231 36.90 1.946 77.0 73.8 > 119 110.6 110.6 

A232 36.25 1.939 77.0 73.8 > 119 83.9 83.9 
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Table 2 Dynamic K Results (continued) c 

RQ-100B, B = 1/2 in., Dynamic Loading 

K c 
Thickness Reduction 

Maximum 
Spec. Max. B Tel!IP· crYS Load No. Load at B/2 at 3B/4 Avg. 

~OF} 
' 

~kiEs2 ~in.} ~ksi) (ksi/in) ~ks:V1n} ~ksi/in2 ~ksi/in} 

B04 41.25 0.533 - 12.0 108.8 >211 335.6 366.7 351.2 
. B06 38.75 0.525 - 12.0 109.0 >211 362.0 382.6 372.6 

B07 38.75 0.525 - 12.0 109.1 >.211 

BOll 15.00 0.522 - 92.0 122.8 76.7 56.9 53.3 55.1 

B012 15.50 0.525 - 92.0 123.1 79.3 53.3 53.3 53.3 

B013 29.40 0.510 - 53.0 115.8 >211 220.5 238.7 229.6 

B014 27.50 0.510 - 53.0 115.8 >211 155.5 157.2 156.4 

B016 32.50 0.515 - 16.0 111.1 >211 293.3 330.5 321.9 

RQ-100B, B = 1 in., Dynamic Loading 

Bll 32.50 0.939 - 90.0 126.5 94.1. 

B12 27.50 0.962 - 90.0 124.4 75.8 54.6 72.3 63.5 

B15 55.00 0.940 - 12.0 110.8 > 206 347.8 437.5 392.7 

B17 •31. 25 0.959 - 92.0 121.5 > 206 131.4 129.1 130.3 

Bl8 43.75 0.935 53.0 115.0 90.9 189.4 244.2 216.8 

B110 67.50 0.958 - 16.0 109.3 149.7 403.3 423.1 413.2 

B111 52.50 0.936 - 53.0 113.7 > 206 306.2 322.9 314.6 

RQ-100B, B = 2 in., Dynamic Loading 

B23 57.50 2.022 - 90.0 125.0 89.1 

B25 80.00 198.4 - 53.0 113.3 145.9 

-· 
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Fig. 1 Leading Edge of a Crack 
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a - IN. 

Fig. 3 Representation of the Crack Extension Instability 
Condition as a Tangency Between the G- and 
R-Curves 
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vs Crack Speed . 
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PMEAN = 10.0 KIPS 

L F 
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.E._ 
2. 

A441 STRUCTURAL STEEl 

GROWTH .PLATE 

RATE 1/2.11 

PMAl. 15.0 

LF 7.0 

FAST a_F 0.5 

CYCLESAVG. 189,000 

Kc 46.8 

. PMAl(. 12..10 

L F 7.0 
SLOW a.s 0.1 

CYCLESAVG. 1'78, 000 

Kc 4Z.7 

NOTE : p MAX.~ KIPS 
LF, a.F ,·a5 __. IN. 
Kc __. KS I. ffi. 

THICKNESS 

1" z.u 

20.0 20.0 
9.5 11.0 
0.8 1.15 

G9,000 132.\000 
57.0 42.8 

13.4 14.7 

9.5 11.0 
0.2 0.1 

2_77,000 IC02.,000 
43.9 33.8 

Fig. 7 Fatigue Pre-Cracking Loading Configuration·and Data 
for A441 Plates 
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Fig. 8 Lehigh Drop-Weight Tear Test Machine 
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Fig. 10 Padded Test Specimen on Test Fixture 
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Fig. 11 Shimming Assemglage 
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SURFACE. 

Fig. 13 Alignment Procedure of Slice Prior to Thickness 
Reduction Measurements 
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.W 

a. 

K BW
2 

· ( a ) ( a )2. _ (a )3 
A (a )4 

Y = 1.5 Cp L -Ia = A o + A • W + A, W + A 3 W + 4 w 

THIS EXPRESSION WAS DEVELOPED BY GROSS AND _SRAWLEY ... 

FOR SPECIMENS WI-lOSE L/W RATIOS ARE EITHER 8 OR 4-. 

-(ASTM STP 410) 

.L/W Ao A. A2. A3 A,. 

8 + 1.910 -2..15 +13.GG -2.3.98 +25.22. 

4 + 1.33 -3.07 + 14.53 -25.11 +25.80 

3.33 + 1.93 -3.12 +14.108 -25.30 +25.90 

Fig. 15 K Calibration for Lehigh Test Specimen 
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I · % T = PER OD :o 2. Tr K' 

WHERE K'= _I 
c 

T=8.4xl0. 3 SEC . 

SHEAR WAVE MOTION 

Y= VELOCITY ~ fG · vT 
T'= PERIOD·= ~D 

T =0.8 xi0- 4 SEC. 

Fig. 24 Investigations into a Typical Load-Time Record 
Response 
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