282 research outputs found

    Quantum gates and projection evolution

    Get PDF
    A new model of quantum objects time evolution called the projection evolution is analyzed against a possibility of constructing the basic quantumgates following the Nielsen's scheme

    Why every observatory needs a disco ball

    Full text link
    Commercial disco balls provide a safe, effective and instructive way of observing the Sun. We explore the optics of solar projections with disco balls, and find that while sunspot observations are challenging, the solar disk and its changes during eclipses are easy and fun to observe. We explore the disco ball's potential for observing the moon and other bright astronomical phenomena.Comment: 6 pages, 7 figures. Submitted to Physics Education. Comments welcom

    The coronagraphic Modal Wavefront Sensor: a hybrid focal-plane sensor for the high-contrast imaging of circumstellar environments

    Get PDF
    The raw coronagraphic performance of current high-contrast imaging instruments is limited by the presence of a quasi-static speckle (QSS) background, resulting from instrumental non-common path errors (NCPEs). Rapid development of efficient speckle subtraction techniques in data reduction has enabled final contrasts of up to 10-6 to be obtained, however it remains preferable to eliminate the underlying NCPEs at the source. In this work we introduce the coronagraphic Modal Wavefront Sensor (cMWS), a new wavefront sensor suitable for real-time NCPE correction. This pupil-plane optic combines the apodizing phase plate coronagraph with a holographic modal wavefront sensor, to provide simultaneous coronagraphic imaging and focal-plane wavefront sensing using the science point spread function. We first characterise the baseline performance of the cMWS via idealised closed-loop simulations, showing that the sensor successfully recovers diffraction-limited coronagraph performance over an effective dynamic range of +/-2.5 radians root-mean-square (RMS) wavefront error within 2-10 iterations. We then present the results of initial on-sky testing at the William Herschel Telescope, and demonstrate that the sensor is able to retrieve injected wavefront aberrations to an accuracy of 10nm RMS under realistic seeing conditions. We also find that the cMWS is capable of real-time broadband measurement of atmospheric wavefront variance at a cadence of 50Hz across an uncorrected telescope sub-aperture. When combined with a suitable closed-loop adaptive optics system, the cMWS holds the potential to deliver an improvement in raw contrast of up to two orders of magnitude over the uncorrected QSS floor. Such a sensor would be eminently suitable for the direct imaging and spectroscopy of exoplanets with both existing and future instruments, including EPICS and METIS for the E-ELT.Comment: 14 pages, 12 figures: accepted for publication in Astronomy & Astrophysic
    • …
    corecore