6,861 research outputs found

    Pressure tuning of light-induced superconductivity in K3C60

    Full text link
    Optical excitation at terahertz frequencies has emerged as an effective means to manipulate complex solids dynamically. In the molecular solid K3C60, coherent excitation of intramolecular vibrations was shown to transform the high temperature metal into a non-equilibrium state with the optical conductivity of a superconductor. Here we tune this effect with hydrostatic pressure, and we find it to disappear around 0.3 GPa. Reduction with pressure underscores the similarity with the equilibrium superconducting phase of K3C60, in which a larger electronic bandwidth is detrimental for pairing. Crucially, our observation excludes alternative interpretations based on a high-mobility metallic phase. The pressure dependence also suggests that transient, incipient superconductivity occurs far above the 150 K hypothesised previously, and rather extends all the way to room temperature.Comment: 33 pages, 17 figures, 2 table

    Pancreatic cancer-derived S-100A8 N-terminal peptide: a diabetes cause?

    Get PDF
    BACKGROUND: Our aim was to identify the pancreatic cancer diabetogenic peptide. METHODS: Pancreatic tumor samples from patients with (n=15) or without (n=7) diabetes were compared with 6 non-neoplastic pancreas samples using SDS-PAGE. RESULTS: A band measuring approximately 1500 Da was detected in tumors from diabetics, but not in neoplastic samples from non-diabetics or samples from non-neoplastic subjects. Sequence analysis revealed a 14 amino acid peptide (1589.88 Da), corresponding to the N-terminal of the S100A8. At 50 nmol/L and 2 mmol/L, this peptide significantly reduced glucose consumption and lactate production by cultured C(2)C(12) myoblasts. The 14 amino acid peptide caused a lack of myotubular differentiation, the presence of polynucleated cells and caspase-3 activation. CONCLUSIONS: The 14 amino acid peptide from S100A8 impairs the catabolism of glucose by myoblasts in vitro and may cause hyperglycemia in vivo. Its identification in biological fluids might be helpful in diagnosing pancreatic cancer in patients with recent onset diabetes mellitus

    Pancreatic cancer-associated diabetes mellitus: an open field for proteomic applications.

    Get PDF
    Background: Diabetes mellitus is associated with pancreatic cancer in more than 80% of the cases. Clinical, epidemiological, and experimental data indicate that pancreatic cancer causes diabetes mellitus by releasing soluble mediators which interfere with both beta-cell function and liver and muscle glucose metabolism. Methods: We analysed, by matrix-assisted laser desorption ionization time of flight (MALDI-TOF), a series of pancreatic cancer cell lines conditioned media, pancreatic cancer patients' peripheral and portal sera, comparing them with controls and chronic pancreatitis patients' sera. Results: MALDI-TOF analysis of pancreatic cancer cells conditioned media and patients' sera indicated a low molecular weight peptide to be the putative pancreatic cancer-associated diabetogenic factor. The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of tumor samples from diabetic and non-diabetic patients revealed the presence of a 1500 Da peptide only in diabetic patients. The amino acid sequence of this peptide corresponded to the N-terminal of an S-100 calcium binding protein, which was therefore suggested to be the pancreatic cancer-associated diabetogenic factor. Conclusions: We identified a tumor-derived peptide of 14 amino acids sharing a 100% homology with an S-100 calcium binding protein, which is probably the pancreatic cancer-associated diabetogenic facto

    Quantum Effects in Friedmann-Robertson-Walker Cosmologies

    Get PDF
    Electrodynamics for self-interacting scalar fields in spatially flat Friedmann-Robertson-Walker space-times is studied. The corresponding one-loop field equation for the expectation value of the complex scalar field in the conformal vacuum is derived. For exponentially expanding universes, the equations for the Bogoliubov coefficients describing the coupling of the scalar field to gravity are solved numerically. They yield a non-local correction to the Coleman-Weinberg effective potential which does not modify the pattern of minima found in static de Sitter space. Such a correction contains a dissipative term which, accounting for the decay of the classical configuration in scalar field quanta, may be relevant for the reheating stage. The physical meaning of the non-local term in the semiclassical field equation is investigated by evaluating this contribution for various background field configurations.Comment: 17 pages, plain TeX + 5 uuencoded figure

    Fermat hypersurfaces and Subcanonical curves

    Full text link
    We extend the classical Enriques-Petri Theorem to ss-subcanonical projectively normal curves, proving that such a curve is (s+2)(s+2)-gonal if and only if it is contained in a surface of minimal degree. Moreover, we show that any Fermat hypersurface of degree s+2s+2 is apolar to an ss-subcanonical (s+2)(s+2)-gonal projectively normal curve, and vice versa.Comment: 18 pages; AMS-LaTe

    Gamma-ray polarization constraints on Planck scale violations of special relativity

    Get PDF
    Using recent polarimetric observations of the Crab Nebula in the hard X-ray band by INTEGRAL, we show that the absence of vacuum birefringence effects constrains O(E/M) Lorentz violation in QED to the level |\xi| < 9x10^{-10} at three sigma CL, tightening by more than three orders of magnitude previous constraints. We show that planned X-ray polarimeters have the potential the potential to probe |\xi|~ 10^{-16} by detecting polarization in active galaxies at red-shift ~1.Comment: 4 pages, 3 figure

    O(d,d)-invariance in inhomogeneous string cosmologies with perfect fluid

    Full text link
    In the first part of the present paper, we show that O(d,d)-invariance usually known in a homogeneous cosmological background written in terms of proper time can be extended to backgrounds depending on one or several coordinates (which may be any space-like or time-like coordinate(s)). In all cases, the presence of a perfect fluid is taken into account and the equivalent duality transformation in Einstein frame is explicitly given. In the second part, we present several concrete applications to some four-dimensional metrics, including inhomogeneous ones, which illustrate the different duality transformations discussed in the first part. Note that most of the dual solutions given here do not seem to be known in the literature.Comment: 25 pages, no figures, Latex. Accepted for publication in General Relativity and Gravitatio

    Qualitative Properties of the Dirac Equation in a Central Potential

    Get PDF
    The Dirac equation for a massive spin-1/2 field in a central potential V in three dimensions is studied without fixing a priori the functional form of V. The second-order equations for the radial parts of the spinor wave function are shown to involve a squared Dirac operator for the free case, whose essential self-adjointness is proved by using the Weyl limit point-limit circle criterion, and a `perturbation' resulting from the potential. One then finds that a potential of Coulomb type in the Dirac equation leads to a potential term in the above second-order equations which is not even infinitesimally form-bounded with respect to the free operator. Moreover, the conditions ensuring essential self-adjointness of the second-order operators in the interacting case are changed with respect to the free case, i.e. they are expressed by a majorization involving the parameter in the Coulomb potential and the angular momentum quantum number. The same methods are applied to the analysis of coupled eigenvalue equations when the anomalous magnetic moment of the electron is not neglected.Comment: 22 pages, plain Tex. In the final version, a section has been added, and the presentation has been improve

    On the semiclassical treatment of Hawking radiation

    Full text link
    In the context of the semiclassical treatment of Hawking radiation we prove the universality of the reduced canonical momentum for the system of a massive shell self gravitating in a spherical gravitational field within the Painlev\'e family of gauges. We show that one can construct modes which are regular on the horizon both by considering as hamiltonian the exterior boundary term and by using as hamiltonian the interior boundary term. The late time expansion is given in both approaches and their time Fourier expansion computed to reproduce the self reaction correction to the Hawking spectrum.Comment: 18 pages, LaTeX, Corrected typo
    • …
    corecore