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1. Introduction

Recent years have witnessed a growing interest in the possible high energy violations of local
Lorentz Invariance (LI) as well as a flourishing of observational tests. Indeed, specific hints of
Lorentz invariance violations (LV) arose from various approaches to Quantum Gravity (QG, see
[1, 2] for detailed references).

In most of the above mentioned QG models, LV enters through dispersion relations which can
be cast in the general form (it is assumed, for simplicity, that rotational invariance is preserved and
only boost invariance is affected by Planck-scale corrections):

E2 = p2 +m2+ f (E, p;µ ;M) , (1.1)

where we set the low energy speed of lightc = 1, E andp are the particle energy and momentum,
µ is a particle-physics mass-scale (possibly associated with a symmetry breaking/emergence scale)
andM denotes the relevant QG scale. Generally, it is assumed thatM is of order the Planck mass:
M ∼MPl≈ 1.22×1019 GeV, corresponding to a quantum (or emergent) gravity effect. The function
f (E, p;µ ;M) can be expanded in powers of the momentum (energy and momentum are basically
indistinguishable at high energies, although they are bothtaken to be smaller than the Planck scale),
and the lowest order LV terms (p, p2 andp3) have been mainly considered [1].

At first sight, it appears hopeless to search for effects suppressed by the Planck scale. Even
the most energetic particles ever detected (Ultra High Energy Cosmic Rays) haveE . 1011 GeV∼
10−8MPl. However, even tiny corrections can be magnified into a significant effect when dealing
with high energies (but still well below the Planck scale), long distances of signal propagation, or
peculiar reactions (see, e.g., [1]). A partial list of thesewindows on quantum gravityincludes:

• sidereal variation of LV couplings as the lab moves with respect to a preferred frame or
direction

• cumulative effects: long baseline dispersion and vacuum birefringence (e.g. of signals from
gamma ray bursts, active galactic nuclei, pulsars)

• anomalous (normally forbidden) threshold reactions allowed by LV terms (e.g. photon decay,
vacuumČerenkov effect)

• shifting of existing threshold reactions (e.g. photon annihilation from blazars, GZK reaction)

• LV induced decays not characterised by a threshold (e.g. decay of a particle from one helicity
to the other or photon splitting)

• maximum velocity (e.g. synchrotron peak from supernova remnants)

• dynamical effects of LV background fields (e.g. gravitational coupling and additional wave
modes)

However, most of these effects require a well established theoretical framework to calculate
reaction rates and describe the particle dynamics. Although we study here a purely kinematic
effect, we prefer for definiteness to work within the framework of Effective Field Theory with
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non-renormalizable, mass dimension 5 LV operators (see [1,3] and references therein) restricted
to QED. In this framework the most general dispersion relations for photons and electrons are

ω2
± = k2±ξ k3/MPl (1.2)

E2
± = p2 +m2+ η±p3/MPl , (1.3)

where (1.2) refers to photons1 and (1.3) to fermions2. The constantsξ andη± indicate the strength
of the LV. The± signs denote right and left circular polarization in (1.2),and positive and nega-
tive helicity states of the fermion in (1.3). Equation (1.2)implies that the direction of polarization
rotates during propagation due to the different velocitiesof the right- and left-handed circular po-
larizations, v± ≃ 1±ξ k/M. This effect is known as vacuum birefringence (VB).

Recentlyη± have been constrained to have a magnitude less than 10−5 at 95% confidence
level (CL) by a detailed analysis of the synchrotron component of the Crab Nebula (CN) broad-
band spectrum [5], while the constraint|ξ | . 2× 10−7 has been obtained by [6] considering the
absence of VB effects during the propagation of optical/UV polarized light from Gamma-Ray
Bursts (GRB). There are also preliminary indications, based on an analysis of the photon fraction
in Ultra-High-Energy Cosmic Rays, that these coefficients might be less than 10−14 [7, 8, 9].

In this contribution, we describe how the current constraints onO(E/MPl) suppressed LV can
be further tightened by about three orders of magnitude for photons [10], by considering the limits
on VB effects implied by the recently detected [11] polarized hard X-rays from the CN. Firstly, we
set such constraints following the arguments by [12, 13]. This approach is robust against systematic
uncertainties related to astrophysical modeling. We then infer tighter limits that exploit and rely on
modeling of the Crab Nebula and pulsar.

Note that this LV term violates CPT symmetry. Studies of higher order CPT conserving terms
would be extremely important (see [2]). However, they cannot be constrained by the methods used
here because they do not predict vacuum birefringence.

Finally, we discuss the constraints which future X-ray polarization measurements of extra-
galactic objects, e.g. Active Galactic Nuclei (AGN) will allow. This is of particular interest in the
light of current experimental efforts to build X-ray polarimeters [14, 15, 16, 17, 18, 19].

2. Birefringence

During propagation over a distanced3, the polarization vector of a linearly polarized plane
wave with momentumk rotates through an angle [4, 12, 13, 2],

θ(k,d) =
ω+(k)−ω−(k)

2
d ≃ ξ

k2d
2MPl

. (2.1)

Depending on the available information on both the observational and the theoretical (i.e. source
modeling) side, observations of polarized light from a distant source can constrain|ξ | in two ways.

1This kind of dispersion relation was also derived in some semi-classical limit of Loop quantum gravity [4].
2For positrons we haveηpos

± = −ηel
∓ [2].

3For an extragalactic object at redshiftz, the (cosmological) distance is given byd(z) = 1
H0

∫ z
0

1+z′√
ΩΛ+Ωm(1+z′)3

dz′ ,

which includes a(1+ z′)2 factor in the integrand to take into account the red-shift acting on the photon energies. As
usual,H0 is the present value of the Hubble parameter, whileΩΛ andΩm represent the density fractions of cosmological
constant and matter in the Universe, respectively.
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Decrease in polarization degree Since detectors have a finite energy bandwidth, eq. (2.1) is never
probed in real situations. Rather, if some net amount of polarization is measured in the
bandk1 < E < k2, an order-of-magnitude constraint arises from the fact that if the angle
of polarization rotation (2.1) were to differ by more thanπ/2 over this band, the detected
polarization would fluctuate sufficiently for the net signalpolarization to be suppressed [12,
13]. From (2.1), this constraint is

ξ .
π MPl

(k2
2−k2

1)d(z)
. (2.2)

This just requires that any intrinsic polarization (at source) is not completely washed out
during signal propagation. It thus relies on the mere detection of a polarized signal, without
considering the observed polarization degree. A more refined limit can be obtained by calcu-
lating the maximum observable polarization degree, given the maximum intrinsic value [20]:

Π(ξ ) = Π(0)
√

〈cos(2θ)〉2
P

+ 〈sin(2θ)〉2
P

, (2.3)

whereΠ(0) is the maximum intrinsic degree of polarization,θ is defined in eq. (2.1) and
the average is weighted over the source spectrum and instrumental efficiency, represented by
the normalized weight functionP(k) [12]. Conservatively, one can setΠ(0) = 100%, but a
lower value can sometimes be justified on the basis of source modeling. Using eq. (2.3), one
can then cast a constraint by requiringΠ(ξ ) to exceed the observed value.

Rotation of polarization angle Suppose that polarized light measured in a certain energy band
has a position angleθobs with respect to a fixed direction. At fixed energy, the polarization
vector rotates by the angle (2.1)4; if the position angle is measured by averaging over a certain
energy range, the final net rotation〈∆θ〉 is given by the superposition of the polarization
vectors of all the photons in that range:

tan(2〈∆θ〉) =
〈sin(2θ)〉

P

〈cos(2θ)〉
P

, (2.4)

whereθ is given by (2.1). If the position angle at emissionθi in the same energy band is
known from a model of the emitting source, a constraint can beset by imposing

tan(2〈∆θ〉) < tan(2θobs−2θi) . (2.5)

Although this limit is tighter than that obtained from the previous methods, it clearly hinges
on assumptions about the nature of the source, which may introduce significant uncertainties.

3. Constraints from the Crab nebula

In the case of the CN, a(46±10)% degree of linear polarization in the 100 keV−1 MeV band
has recently been measured by the INTEGRAL mission [21, 11] (see also [22]). This measurement

4Faraday rotation is negligible at such energies.
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uses all photons within the SPI instrument energy band. However the convolution of the instru-
mental sensitivity to polarization with the detected number counts as a function of energy,P(k), is
maximized and approximately constant within a narrower energy band (150 to 300 keV) and falls
steeply outside this range [23]. Hence we shall, conservatively, assume that most polarized photons
are concentrated in this band. GivendCrab = 1.9 kpc,k2 = 300 keV andk1 = 150 keV, eq. (2.2)
leads to the order-of-magnitude estimate|ξ |. 2×10−9. A more accurate limit follows from (2.3).
In the case of the CN there is a robust understanding that photons in the range of interest are pro-
duced via the synchrotron process, for which the maximum degree of intrinsic linear polarization
is about 70% (see e.g. [24]). The requirementΠ(ξ ) > 16% (taking account of a 3σ offset from the
best fit value 46%) leads to the constraint (at 99% CL)|ξ | . 6×10−9 [10]. It is interesting to no-
tice that X-ray polarization measurements of the CN alreadyavailable in 1978 [25], set a constraint
|ξ | . 5.4×10−6, only one order of magnitude less stringent than that reported in [6].

This constraint can be tightened by exploiting the current astrophysical understanding of the
source. The CN is a cloud of relativistic particles and fieldspowered by a rapidly rotating, strongly
magnetized neutron star. Both theHubble Space Telescopeand theChandraX-ray satellite have
imaged the system, revealing a jet and torus that clearly identify the neutron star rotation axis [26].
The projection of this axis on the sky lies at a position angleof 124.0◦ ± 0.1◦ (measured from
North in anti-clockwise). The neutron star itself emits pulsed radiation at its rotation frequency
of 30 Hz. In the optical band these pulses are superimposed ona fainter steady component with a
linear polarization degree of 30% and direction precisely aligned with that of the rotation axis [27].
The direction of polarization measured by INTEGRAL-SPI in theγ-rays isθobs= 123◦±11◦ (1σ
error) from the North, thus also closely aligned with the jetdirection and remarkably consistent
with the optical observations. This compelling (theoretical and observational) evidence allows us
to use eq. (2.5). Conservatively assumingθi −θobs= 33◦ (i.e. 3σ from θi , 99% CL), this translates
into the limit |ξ | . 9×10−10 [10].

4. Discussion

The constraints presented in section 3 are remarkably strong. Although based on a cumulative
effect, they are achieved using a local (Galactic) object. The reason lies, on the one hand, in the
quadratic dependence ofθ on the photon energy, in constrast with the linear gain givenby distance
(see e.g. eq. (2.1)). On the other hand, the robust theoretical understanding of the CN has enabled
us to strengthen the constraints significantly.

Further improvements on LV constraints via birefringenge are expected thanks to the forth-
coming high-energy polarimeters, which will provide an unprecedented sensitivity, sufficient to
detect polarized light at a few % levels also in extragalactic sources. The LV limits will be op-
timized by balancing between source distance and observational energy range depending on the
detector sensitivity as shown in [10]. Remarkably, constraints of order|ξ | < O(10−16) could be
placed if some polarized distant sources (z∼ 1) will be observed by such instruments at 1 MeV.
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