10 research outputs found

    Association of kidney disease measures with risk of renal function worsening in patients with type 1 diabetes

    Get PDF
    Background: Albuminuria has been classically considered a marker of kidney damage progression in diabetic patients and it is routinely assessed to monitor kidney function. However, the role of a mild GFR reduction on the development of stage 653 CKD has been less explored in type 1 diabetes mellitus (T1DM) patients. Aim of the present study was to evaluate the prognostic role of kidney disease measures, namely albuminuria and reduced GFR, on the development of stage 653 CKD in a large cohort of patients affected by T1DM. Methods: A total of 4284 patients affected by T1DM followed-up at 76 diabetes centers participating to the Italian Association of Clinical Diabetologists (Associazione Medici Diabetologi, AMD) initiative constitutes the study population. Urinary albumin excretion (ACR) and estimated GFR (eGFR) were retrieved and analyzed. The incidence of stage 653 CKD (eGFR < 60 mL/min/1.73 m2) or eGFR reduction > 30% from baseline was evaluated. Results: The mean estimated GFR was 98 \ub1 17 mL/min/1.73m2 and the proportion of patients with albuminuria was 15.3% (n = 654) at baseline. About 8% (n = 337) of patients developed one of the two renal endpoints during the 4-year follow-up period. Age, albuminuria (micro or macro) and baseline eGFR < 90 ml/min/m2 were independent risk factors for stage 653 CKD and renal function worsening. When compared to patients with eGFR > 90 ml/min/1.73m2 and normoalbuminuria, those with albuminuria at baseline had a 1.69 greater risk of reaching stage 3 CKD, while patients with mild eGFR reduction (i.e. eGFR between 90 and 60 mL/min/1.73 m2) show a 3.81 greater risk that rose to 8.24 for those patients with albuminuria and mild eGFR reduction at baseline. Conclusions: Albuminuria and eGFR reduction represent independent risk factors for incident stage 653 CKD in T1DM patients. The simultaneous occurrence of reduced eGFR and albuminuria have a synergistic effect on renal function worsening

    Continuous Glucose and Heart Rate Monitoring in Young People with Type 1 Diabetes: An Exploratory Study about Perspectives in Nocturnal Hypoglycemia Detection

    No full text
    A combination of information from blood glucose (BG) and heart rate (HR) measurements has been proposed to investigate the HR changes related to nocturnal hypoglycemia (NH) episodes in pediatric subjects with type 1 diabetes (T1D), examining whether they could improve hypoglycemia prediction. We enrolled seventeen children and adolescents with T1D, monitored on average for 194 days. BG was detected by flash glucose monitoring devices, and HR was measured by wrist-worn fitness trackers. For each subject, we compared HR values recorded in the hour before NH episodes (before-hypoglycemia) with HR values recorded during sleep intervals without hypoglycemia (no-hypoglycemia). Furthermore, we investigated the behavior after the end of NH. Nine participants (53%) experienced at least three NH. Among these nine subjects, six (67%) showed a statistically significant difference between the before-hypoglycemia HR distribution and the no-hypoglycemia HR distribution. In all these six cases, the before-hypoglycemia HR median value was higher than the no-hypoglycemia HR median value. In almost all cases, HR values after the end of hypoglycemia remained higher compared to no-hypoglycemia sleep intervals. This exploratory study support that HR modifications occur during NH in T1D subjects. The identification of specific HR patterns can be helpful to improve NH detection and prevent fatal events

    Patient-Generated Health Data Integration and Advanced Analytics for Diabetes Management: The AID-GM Platform

    No full text
    Diabetes is a high-prevalence disease that leads to an alteration in the patient’s blood glucose (BG) values. Several factors influence the subject’s BG profile over the day, including meals, physical activity, and sleep. Wearable devices are available for monitoring the patient’s BG value around the clock, while activity trackers can be used to record his/her sleep and physical activity. However, few tools are available to jointly analyze the collected data, and only a minority of them provide functionalities for performing advanced and personalized analyses. In this paper, we present AID-GM, a web application that enables the patient to share with his/her diabetologist both the raw BG data collected by a flash glucose monitoring device, and the information collected by activity trackers, including physical activity, heart rate, and sleep. AID-GM provides several data views for summarizing the subject’s metabolic control over time, and for complementing the BG profile with the information given by the activity tracker. AID-GM also allows the identification of complex temporal patterns in the collected heterogeneous data. In this paper, we also present the results of a real-world pilot study aimed to assess the usability of the proposed system. The study involved 30 pediatric patients receiving care at the Fondazione IRCCS Policlinico San Matteo Hospital in Pavia, Italy

    Exploring the inter-subject variability in the relationship between glucose monitoring metrics and glycated hemoglobin for pediatric patients with type 1 diabetes

    No full text
    Objectives: Despite the widespread diffusion of continuous glucose monitoring (CGM) systems, which includes both real-time CGM (rtCGM) and intermittently scanned CGM (isCGM), an effective application of CGM technology in clinical practice is still limited. The study aimed to investigate the relationship between isCGM-derived glycemic metrics and glycated hemoglobin (HbA1c), identifying overall CGM targets and exploring the inter-subject variability.Methods: A group of 27 children and adolescents with type 1 diabetes under multiple daily injection insulin-therapy was enrolled. All participants used the isCGM Abbott's FreeStyle Libre system on average for eight months, and clinical data were collected from the Advanced Intelligent Distant-Glucose Monitoring platform. Starting from each HbA1c examdate, windows of past 30, 60, and 90 days were considered to compute several CGM metrics. The relationships between HbA1c and each metric were explored through linear mixed models, adopting an HbA1c target of 7%.Results: Time in Range and Time in Target Range show a negative relationship with HbA1c (R-2>0.88) whereas Time Above Range and Time Severely Above Range show a positive relationship (R-2>0.75). Focusing on Time in Range in 30-day windows, random effect represented by the patient's specific intercept reveals a high variability compared to the overall population intercept.Conclusions: This study confirms the relationship between several CGM metrics and HbA1c; it also highlights the importance of an individualized interpretation of the CGM data

    Premenstrual Syndrome and Premenstrual Dysphoric Disorder as Centrally Based Disorders

    No full text
    Premenstrual syndrome (PMS) and premenstrual dysphoric disorder (PMDD) encompass a variety of symptoms that occur during the luteal phase of the menstrual cycle and impair daily life activities and relationships. Depending on the type and severity of physical, emotional or behavioral symptoms, women of reproductive age followed for at least two prospective menstrual cycles may receive one of the two diagnoses. PMDD is the most severe form of PMS, predominantly characterized by emotional and behavioral symptoms not due to another psychiatric disorder. PMS and PMDD are common neuro-hormonal gynecological disorders with a multifaceted etiology. Gonadal steroid hormones and their metabolites influence a plethora of biological systems involved in the occurrence of specific symptoms, but there is no doubt that PMS/PMDD are centrally based disorders. A more sensitive neuroendocrine threshold to cyclical variations of estrogens and progesterone under physiological and hormonal therapies is present. Moreover, altered brain sensitivity to allopregnanolone, a metabolite of progesterone produced after ovulation potentiating GABA activity, along with an impairment of opioid and serotoninergic systems, may justify the occurrence of emotional and behavioral symptoms. Even neuro-inflammation expressed via the GABAergic system is under investigation as an etiological factor of PMS/PMDD. Pharmacological management aims to stabilize hormonal fluctuations and to restore the neuroendocrine balance. The rationale of suppressing ovulation supports prescription of combined hormonal contraception (CHC). Its effect on mood is highly variable and depends on biochemical characteristics of exogenous steroids and on type and severity of symptoms. Hormonal regimens reducing the estrogen-free interval or suppressing menstruation seem better choices. Psychoactive agents, such as serotonin reuptake inhibitors (SSRIs), are effective in reducing the symptoms of PMS/PMDD and may be prescribed continuously or only during the luteal phase. Novel therapeutic approaches include inhibition of progesterone receptors in the brain, i.e., with ulipristal acetate, reduced conversion of progesterone with dutasteride, and modulation of the action of allopregnanolone on the brain GABAergic system with sepranolone

    Relationship between personality traits and sexual function in symptomatic postmenopausal women

    No full text
    Female sexual function relies on a complex interplay of physical, psychosocial, and neurobiological factors. Over the last decades, increasing attention has been paid to the influence of personality traits on general health and many aspects of quality of life, including sexuality

    Impaired Glucose-Insulin Metabolism in Multisystem Inflammatory Syndrome Related to SARS-CoV-2 in Children

    No full text
    An interaction between metabolic glucose impairment and coronavirus disease 2019 is reported. The development of a severe multisystem inflammatory syndrome in children (MIS-C) related to SARS-CoV-2 infection has been described. We evaluated the impact of MIS-C on glycemic patterns in pediatric patients. A group of 30 children and adolescents affected by MIS-C were considered; all patients were normal weight. Clinical and biochemical assessments, including surrogate markers of insulin resistance (IR) such as homeostasis model analysis-IR (HOMA-IR) and triglyceride-glucose (TyG) indexes, were recorded. Patients were also invited to undergo an intermittently scanned continuous glucose monitoring (isCGM). HOMA-IR index was calculated in 18 patients (60%), of which 17 (94%) revealed a pathological value. TyG index was computed for all patients and pathological values were detected in all cases. In 15 patients, isCGM data were recorded on average for 9 days (+/- 3 days). Overall, average glucose was 105 mg/dL (+/- 16 mg/dL) and average time spent in the 70-180 mg/dL range (TIR) was 93.76%, with nearly 10% of glucose readings in the 141-180 mg/dL range; glycemic fluctuations over the hyperglycemic threshold were detected in four patients. Regular glucose monitoring may be useful to prevent metabolic imbalance and obtain a better outcome

    Artificial intelligence and statistical methods for stratification and prediction of progression in amyotrophic lateral sclerosis: a systematic review

    Get PDF
    © 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by- nc-nd/4.0/).Background: Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disorder characterised by the progressive loss of motor neurons in the brain and spinal cord. The fact that ALS's disease course is highly heterogeneous, and its determinants not fully known, combined with ALS's relatively low prevalence, renders the successful application of artificial intelligence (AI) techniques particularly arduous. Objective: This systematic review aims at identifying areas of agreement and unanswered questions regarding two notable applications of AI in ALS, namely the automatic, data-driven stratification of patients according to their phenotype, and the prediction of ALS progression. Differently from previous works, this review is focused on the methodological landscape of AI in ALS. Methods: We conducted a systematic search of the Scopus and PubMed databases, looking for studies on data-driven stratification methods based on unsupervised techniques resulting in (A) automatic group discovery or (B) a transformation of the feature space allowing patient subgroups to be identified; and for studies on internally or externally validated methods for the prediction of ALS progression. We described the selected studies according to the following characteristics, when applicable: variables used, methodology, splitting criteria and number of groups, prediction outcomes, validation schemes, and metrics. Results: Of the starting 1604 unique reports (2837 combined hits between Scopus and PubMed), 239 were selected for thorough screening, leading to the inclusion of 15 studies on patient stratification, 28 on prediction of ALS progression, and 6 on both stratification and prediction. In terms of variables used, most stratification and prediction studies included demographics and features derived from the ALSFRS or ALSFRS-R scores, which were also the main prediction targets. The most represented stratification methods were K-means, and hierarchical and expectation-maximisation clustering; while random forests, logistic regression, the Cox proportional hazard model, and various flavours of deep learning were the most widely used prediction methods. Predictive model validation was, albeit unexpectedly, quite rarely performed in absolute terms (leading to the exclusion of 78 eligible studies), with the overwhelming majority of included studies resorting to internal validation only. Conclusion: This systematic review highlighted a general agreement in terms of input variable selection for both stratification and prediction of ALS progression, and in terms of prediction targets. A striking lack of validated models emerged, as well as a general difficulty in reproducing many published studies, mainly due to the absence of the corresponding parameter lists. While deep learning seems promising for prediction applications, its superiority with respect to traditional methods has not been established; there is, instead, ample room for its application in the subfield of patient stratification. Finally, an open question remains on the role of new environmental and behavioural variables collected via novel, real-time sensors.info:eu-repo/semantics/publishedVersio

    Impaired respiratory function reduces haemoglobin oxygen affinity in COVID-19

    No full text
    corecore