122 research outputs found

    TiO2nanotubes in lithium-ion batteries

    Get PDF
    In this contribution we report on electrochemical approaches in TiO2 based electrodes synthesis. TiO2 nanotubes (NTs) were synthesized following a facile anodization of titanium sheets. Optimizing the experimental conditions two electrodes with NTs lengths of ∼10 μm (Long) and ∼2 μm (Short), were obtained. At the end of the anodization the amorphous TiO2 (a-TiO2) was thermally treated to promote the conversion in the anatase crystal phase (c-TiO2). Both the Long and Short NTs electrodes were tested for their applications as anodes in lithium-ion batteries (LIBs). A preliminary comparison was performed to evaluate the role of a-TiO2 and c-TiO2 phases. Here, Short a-TiO2 NTs exhibited a fast storage rate respect to Short c-TiO2. Comparing the NTs length, Long a-TiO2 electrodes exhibited the highest specific capacity, close to the theoretical value. Furthermore, all the electrodes tested showed an excellent capacity retention proceeding with Discharge/Charge cycles

    Towards a single European strategic research and innovation agenda on materials for all reactor generations through dedicated projects

    Get PDF
    The goal of the ORIENT-NM action is to produce a single European strategic vision on research and innovation concerning nuclear materials in the EU, serving all reactor generations and nuclear systems. The key in this endeavour is to focus on advanced materials science practices that, combined with digital techniques, will enable acceleration in materials development, manufacturing, supply, qualification, and monitoring, in support of nuclear energy safety, efficiency, economy and sustainability. The research agenda will be rooted in existing virtuous examples of nuclear materials science projects. Here the results of three of them are summarised, thereby covering different reactor applications and families of materials, as well as a range of advanced material research approaches. GEMMA addressed a number of key areas concerning the development and qualification of metallic structural materials for GenIV reactor conditions, focusing on austenitic steels and their compatibility with several non-aqueous coolants, their welds and the modelling of their stability under irradiation. INSPYRE was an integrated project applying a basic science approach to (U,Pu)O2 fuels, to develop physics-based models for the behaviour of nuclear fuels under irradiation and improve fuel performance codes. Modelling was also the focus of the M4F project, which brought together the fission and fusion materials communities to study the effects of localised deformation under irradiation in ferritic/martensitic steels and to develop good practices to use ion irradiation as a tool to evaluate radiation effects on materials

    Evidence of noncovalent complexes in some natural extracts: Ceylon tea and mate extracts

    Get PDF
    AbstractConsidering the high complexity of natural extracts, because of the presence of organic molecules of different chemical nature, the possibility of formation of noncovalent complexes should be taken into account. In a previous investigation, the formation of bimolecular complexes between caffeine and catechins in green tea extracts (GTE) has been experimentally proven by means of mass spectrometric and 1H nuclear magnetic resonance experiments. The same approaches have been employed in the present study to evaluate the presence of bimolecular complexes in Ceylon tea and mate extracts. The obtained results show that in the case of Ceylon tea extracts, protonated theaflavin is detectable, together with theaflavin/caffein complexes, while caffeine/catechin complexes, already detected in green tea, are still present but at lower concentration. This aspect is evidenced by the comparison of precursor ion scans performed on protonated caffeine for the two extracts. The spectra obtained in these conditions for GTE and Ceylon tea show that the complexes of caffeine with epigallocatechin (EGC), epicatechin gallate (ECG), and epigallocatechin gallate (EGCG), highy abundant in the case of GTE (signal‐to‐chemical noise ratio in the range 50‐100), are negligible (signal‐to‐chemical noise ratio in the range 2‐3) in the case of Ceylon tea. Mate extracts show the formation of bimolecular complexes involving caffeine but not catechins, and chlorogenic acid becomes responsible for other complex formation. Under positive ion and negative ion conditions, accurate mass measurements allow the identification of malealdehyde, chlorogenic acid, caffeine, two isomers of dicaffeoylquinic acid, rutin, and kaempferol‐3‐O‐rutinoside. These data indicate that the formation of complexes in natural extracts is a common behavior, and their presence must be considered in the description of natural extracts and, consequently, in their biological activity

    Nine weeks of high-intensity indoor cycling training induced changes in the microbiota composition in non-athlete healthy male college students

    Get PDF
    Background: The gut microbiota constitutes a dynamic microbial system constantly challenged by environmental conditions, including physical exercise. Limited human studies suggest that exercise could play a beneficial role for gut health, increasing microbial diversity, even if the effects of exercise on gut microbial microorganisms depends on its intensity and duration. This study aimed to investigate the effects of nine weeks of high-intensity interval exercise on gut microbiota composition in healthy young adults. Methods: The gut microbiota composition of seventeen healthy male college students was analysed before and after nine weeks of high-intensity interval cycling training by 16S rRNA amplicon sequencing. PERMANOVA for repeated measures was used to test pre-post differences in the relative abundance of all taxonomic levels, and correlations between variations in microbial composition and physical and dietary features were also assessed. Results: Physical exercise induced changes in microbiota composition, at all taxonomic levels analysed (phyla: F [1, 32]=3.97, p=0.029; classes: F [1, 32]=3.39, p=0.033, orders: F [1, 32]=3.17, p=0.044, families: F [1, 32]=1.54, p=0.037, genera: F [1, 32]=1.46, p=0.015, species: F [1, 32]=1.38, p=0.007). Conversely, no differences were found between pre and post-training conditions for microbial community richness (Chao1: V=105, p=0.06) or diversity (Shannon index: V=62, p=0.52; Simpson index: V=59, p=0.43). Changes in the relative abundance of eighteen genera were correlated to changes of twenty environmental factors grouped in physical features, sport-related features, and dietary features. Conclusions: Nine weeks of high-intensity exercise induced modifications in gut microbiota composition in healthy male college students, shifting the gut microbial population towards a healthier microbiome with benefit to human health in general

    Innovative Gen-II/III and research reactors' fuels and materials

    Get PDF
    This manuscript presents important material challenges regarding innovative Gen-II/III nuclear systems and research reactors. The challenges are discussed alongside the key achievements so far realised within the framework of 4 EU-funded projects: H2020 IL TROVATORE, FP7 MULTIMETAL, FP7 MATTER and FP7 SCWR-FQT. All the four Projects deal with innovative researches on materials to enhance the safety of nuclear reactors. IL TROVATORE proposes new materials for fuel cladding of PWR reactors and tests in order to really find out an "Accident Tolerant Fuel" (ATF). MULTIMETAL focused on optimization of dissimilar welds fabrication having considered the field performances and dedicated experiments. MATTER carried on methodological and experimental studies on the use of grade 91 steel in the harsh environment of liquid metal cooled EU fast reactors. SCWR-FQT focused on fuel qualification of Supercritical Water Reactor including the selection of the better material to resist the associated high thermal flux

    A t(4;13)(q21;q14) translocation in B-cell chronic lymphocytic leukemia causing concomitant homozygous DLEU2/miR15a/miR16-1 and heterozygous ARHGAP24 deletions

    Get PDF
    13q14 deletion is the most recurrent chromosomal aberration reported in B-CLL, having a favorable prognostic significance when occurring as the sole cytogenetic alteration. However, its clinical outcome is also related to the deletion size and number of cells with the del(13)(q14) deletion. In 10% of cases, 13q14 deletion arises following a translocation event with multiple partner chromosomes, whose oncogenic impact has not been investigated so far due to the assumption of a possible role as a passenger mutation. Here, we describe a t(4;13)(q21;q14) translocation occurring in a B-CLL case from the diagnosis to spontaneous regression. FISH and SNP-array analyses revealed a heterozygous deletion at 4q21, leading to the loss of the Rho GTPase Activating Protein 24 (ARHGAP24) tumor suppressor gene, down-regulated in the patient RNA, in addition to the homozygous deletion at 13q14 involving DLEU2/miR15a/miR16–1 genes. Interestingly, targeted Next Generation Sequencing analysis of 54 genes related to B-CLL indicated no additional somatic mutation in the patient, underlining the relevance of this t(4;13)(q21;q14) aberration in the leukemogenic process. In all tested RNA samples, RT-qPCR experiments assessed the downregulation of the PCNA, MKI67, and TOP2A proliferation factor genes, and the BCL2 anti-apoptotic gene as well as the up-regulation of TP53 and CDKN1A tumor suppressors, indicating a low proliferation potential of the cells harboring the aberration. In addition, RNA-seq analyses identified four chimeric transcripts (ATG4B::PTMA, OAZ1::PTMA, ZFP36::PTMA, and PIM3::BRD1), two of which (ATG4B::PTMA and ZFP36::PTMA) failed to be detected at the remission, suggesting a possible transcriptional remodeling during the disease course. Overall, our results indicate a favorable prognostic impact of the described chromosomal aberration, as it arises a permissive molecular landscape to the spontaneous B-CLL regression in the patient, highlighting ARHGAP24 as a potentially relevant concurrent alteration to the 13q14 deletion in delineating B-CLL disease evolution

    Intratumoral injection of TLR9 agonist promotes an immunopermissive microenvironment transition and causes cooperative antitumor activity in combination with anti-PD1 in pancreatic cancer

    Get PDF
    Background: Complex tumor and immune microenvironment render pancreatic ductal adenocarcinoma (PDAC) resistant to immune checkpoint inhibitors (ICIs). Therefore, a strategy to convert the immune hostile into an immunopermissive tumor is required. Recent studies showed that intratumoral injection of Toll-like receptor 9 agonist IMO-2125 primes the adaptive immune response. Phase I and II trials with intratumoral IMO-2125 demonstrated its safety and antitumoral activity. Methods: We generated an array of preclinical models by orthotopically engrafting PDAC-derived cell lines in syngeneic mice and categorized them as high, low and no immunogenic potential, based on the ability of tumor to evoke T lymphocyte or NK cell response. To test the antitumor efficacy of IMO-2125 on locally treated and distant sites, we engrafted cancer cells on both flanks of syngeneic mice and treated them with intratumoral IMO-2125 or vehicle, alone or in combination with anti-PD1 ICI. Tumor tissues and systemic immunity were analyzed by transcriptomic, cytofluorimetric and immunohistochemistry analysis. Results: We demonstrated that intratumoral IMO-2125 as single agent triggers immune system response to kill local and distant tumors in a selected high immunogenic subtype affecting tumor growth and mice survival. Remarkably, intratumoral IMO-2125 in combination with systemic anti-PD1 causes a potent antitumor effect on primary injected and distant sites also in pancreatic cancer models with low immunogenic potential, preceded by a transition toward an immunopermissive microenvironment, with increase in tumor-infiltrating dendritic and T cells in tumor and lymph nodes. Conclusion: We demonstrated a potent antitumor activity of IMO-2125 and anti-PD1 combination in immunotherapy-resistant PDAC models through the modulation of immune microenvironment, providing the rationale to translate this strategy into a clinical setting

    Mediterranean monitoring and forecasting operational system for Copernicus Marine Service

    Get PDF
    The MEDiterranean Monitoring and Forecasting Center (Med-MFC) is part of the Copernicus Marine Environment Monitoring Service (CMEMS, http://marine.copernicus.eu/), provided on an operational mode by Mercator Ocean in agreement with the European Commission. Specifically, Med MFC system provides regular and systematic information about the physical state of the ocean and marine ecosystems for the Mediterranean Sea. The Med-MFC service started in May 2015 from the pre-operational system developed during the MyOcean projects, consolidating the understanding of regional Mediterranean Sea dynamics, from currents to biogeochemistry to waves, interfacing with local data collection networks and guaranteeing an efficient link with other Centers in Copernicus network. The Med-MFC products include analyses, 10 days forecasts and reanalysis, describing currents, temperature, salinity, sea level and pelagic biogeochemistry. Waves products will be available in MED-MFC version in 2017. The consortium, composed of INGV (Italy), HCMR (Greece) and OGS (Italy) and coordinated by the Euro-Mediterranean Centre on Climate Change (CMCC, Italy), performs advanced R&D activities and manages the service delivery. The Med-MFC infrastructure consists of 3 Production Units (PU), for Physics, Biogechemistry and Waves, a unique Dissemination Unit (DU) and Archiving Unit (AU) and Backup Units (BU) for all principal components, guaranteeing a resilient configuration of the service and providing and efficient and robust solution for the maintenance of the service and delivery. The Med-MFC includes also an evolution plan, both in terms of research and operational activities, oriented to increase the spatial resolution of products, to start wave products dissemination, to increase temporal extent of the reanalysis products and improving ocean physical modeling for delivering new products. The scientific activities carried out in 2015 concerned some improvements in the physical, biogeochemical and wave components of the system. Regarding the currents, new grid-point EOFs have been implemented in the Med-MFC assimilation system; the climatological CMAP precipitation was replaced by the ECMWF daily precipitation; reanalysis time-series have been increased by one year. Regarding the biogeochemistry, the main scientific achievement is related to the implementation of the carbon system in the Med-MFC biogeochemistry model system already available. The new model is able to reproduce the principal spatial patterns of the carbonate system variables in the Mediterranean Sea. Further, a key result consists of the calibration of the new variables (DIC and alkalinity), which serves to the estimation of the accuracy of the new products to be released in the next version of the system (i.e. pH and pCO2 at surface). Regarding the waves, the system has been validated against in-situ and satellite observations. For example, a very good agreement between model output and in-situ observations has been obtained at offshore and/or well-exposed wave buoys in the Mediterranean Sea.PublishedVienna3SR. AMBIENTE - Servizi e ricerca per la Societ

    Preliminary Assessment of Radiolysis for the Cooling Water System in the Rotating Target of {SORGENTINA}-{RF}

    Get PDF
    The SORGENTINA-RF project aims at developing a 14 MeV fusion neutron source featuring an emission rate in the order of 5-7 x 10(13) s(-1). The plant relies on a metallic water-cooled rotating target and a deuterium (50%) and tritium (50%) ion beam. Beyond the main focus of medical radioisotope production, the source may represent a multi-purpose neutron facility by implementing a series of neutron-based techniques. Among the different engineering and technological issues to be addressed, the production of incondensable gases and corrosion product into the rotating target deserves a dedicated investigation. In this study, a preliminary analysis is carried out, considering the general layout of the target and the present choice of the target material
    corecore