51 research outputs found

    Geologic composition influences distribution of microbiotic crusts in the Mojave and Colorado Deserts at the regional scale

    Get PDF
    Abiotic and biotic factors influencing distribution of microbiotic crusts within hot deserts, such as the Mojave and Colorado Deserts, are poorly known. Our objective was to examine microbiotic crust distribution with reference to soil and parent material characteristics as well as plant functional groups in wilderness areas of Joshua Tree National Park (JTNP). A total of 75 sites were visually assessed for crust abundance and plant community composition; soil physical and chemical factors also were measured. Microbiotic crusts of JTNP, in particular lichen and moss crusts, were not as well-developed or as widely distributed as in other arid regions of North America. Algal crusts were most prevalent, lichen crusts were sparse, and crusts containing mosses were rare, with average percent land surface absolute (and relative) cover for these three cover categories being 11.4% (17.4%), 1.7% (2.7%), and 0.02% (0.02%), respectively. Previously reported individual drivers of crust development, such as pH, electrical conductivity (EC), and soil texture, did not appear to strongly influence crust development in this study of the Mojave and Colorado Deserts. Proximity to granitic bedrock and grusy granitic soils associated with it were the key determinants of microbiotic crust distribution in the wilderness areas of JTNP. In particular, crusts were best developed in grusy granitic soils. Overall, our study emphasized the importance of geology in driving crust distribution and its potential value as a predictor of where crusts may occur in the hot deserts of North America

    Cyanomargarita gen. nov. (Nostocales, Cyanobacteria): convergent evolution resulting in

    Get PDF
    Two populations of Rivularia‐like cyanobacteria were isolated from ecologically distinct and biogeographically distant sites. One population was from an unpolluted stream in the Kola Peninsula of Russia, whereas the other was from a wet wall in the Grand Staircase‐Escalante National Monument, a desert park‐land in Utah. Though both were virtually indistinguishable from Rivularia in field and cultured material, they were both phylogenetically distant from Rivularia and the Rivulariaceae based on both 16S rRNA and rbcLX phylogenies. We here name the new cryptic genus Cyanomargarita gen. nov., with type species C. melechinii sp. nov., and additional species C. calcarea sp. nov. We also name a new family for these taxa, the Cyanomargaritaceae

    Comparison of Disturbance Impacts to and Spatial Distribution of Biological Soil Crusts in the Little San Bernardino Mountains of Joshua Tree National Park, California

    Get PDF
    Biological soil crust ecology in the hot Mojave Desert is poorly understood with regard to crust distribution and abundance, as well as the impacts of trampling disturbance on crust development. Our objective was to study biological soil crusts in 2 areas of differing disturbance pressures in the high desert region of Joshua Tree National Park, California, with respect to visible crust cover and frequency, chlorophyll a, and soil stability. Impacts on biological soil crusts from 2 disturbance regimes, historic grazing and recent high knot traffic, were compared using a disturbance indicator. In addition, we measured a suite of abiotic and biotic soil parameters commonly associated with crust abundance and distribution and characterized occurrence with respect to 3 geomorphic features (pockets, slopes, and wash banks). Individual physical and chemical soil parameters historically have been associated with crust development. In contrast, this study demonstrates that geomorphic features with a suite of soil properties clearly impacted crust development. In both study areas, wash banks showed the best crust development (51.%-52% total crust cover) and slopes showed the poorest crust development (\u3c37% total crust cover). Lichens and mosses were best developed in the pocket areas (1.1% and 1.5% cover, 25%-30% frequency), which can accumulate and retain moisture during and following precipitation events. Our disturbance index suggested that the high-foot-traffic area, being associated with a reduction in visible crust cover, hiss experienced inure recent disturbance than the historically grazed sites. However, despite the reduction in cover, the high-foot-traffic area had more lichen and moss crusts, indicating that the crusts in this area are more successionally mature. In contrast, the historically grazed area showed clear signs of recovery from past grazing disturbance, with a higher visual cover of biological soil crusts. However, crusts also had lower biomass values, supporting an earlier successional stage. Overall, we conclude that biological soil crusts of the Mojave Desert are very different in composition, form, and ecology than crusts of other desert regions of North America

    Revision of the Synechococcales (Cyanobacteria) through recognition of four families including Oculatellaceae fam. nov. and Trichocoleaceae fam. nov. and six new genera containing 14 species

    Get PDF
    A total of 48 strains of thin, filamentous cyanobacteria in Synechococcales were studied by sequencing 16S rRNA and rpo C1 sequence fragments. We also carefully characterized a subset of these by morphology. Phylogenetic analysis of the 16S rRNA gene data using Bayesian inference of a large Synechococcales alignment (345 OTU’s) was in agreement with the phylogeny based on the rpo C1 gene for 59 OTU’s. Both indicated that the large family-level grouping formerly classified as the Leptolyngbyaceae could be further divided into four family-level clades. Two of these family-level clades have been recognized previously as Leptolyngbyaceae and Prochlorotrichaceae. Oculatellaceae fam. nov. and Trichocoleaceae fam. nov. are proposed for the other two families. The Oculatellaceae was studied in greater detail, and six new genera containing 14 species were characterized and named. These new taxa are: Pegethrix botrychoides , P. olivacea, P. convoluta , P. indistincta , Drouetiella lurida , D. hepatica , D. fasciculata , Cartusia fontana , Tildeniella torsiva , T. nuda , Komarkovaea angustata , Kaiparowitsia implicata , Timaviella obliquedivisa , and T. radians

    TRICHOTORQUATUS GEN. NOV. - A NEW GENUS OF SOIL CYANOBACTERIA DISCOVERED FROM AMERICAN DRYLANDS

    Get PDF
    Cyanobacteria are crucial ecosystem components in dryland soils. Advances in describing a–level taxonomy are needed to understand what drives their abundance and distribution. We describe Trichotorquatus gen. nov. (Oculatellaceae, Synechococcales, Cyanobacteria) based on four new species isolated from dryland soils including the coastal sage scrub near San Diego, California (USA), the Mojave and Colorado Deserts with sites at Joshua Tree National Park and Mojave National Preserve, California (USA), and the Atacama Desert (Chile). The genus is morphologically characterized by having thin trichomes (\u3c4.5 lm wide), cells both shorter and longer than wide, rarely occurring single and double false branching, necridia appearing singly or in rows, and sheaths with a distinctive collar-like fraying and widening mid-filament, the feature for which the genus is named. The genus is morphologically nearly identical with Leptolyngbya sensu stricto but is phylogenetically quite distant from that genus. It is consequently a cryptic genus that will likely be differentiated in future studies based on 16S rRNA sequence data. The type species, T. maritimus sp. nov. is morphologically distinct from the other three species, T. coquimbo sp. nov., T. andrei sp. nov. and T. ladouxae sp. nov. However, these latter three species are morphologically very close and are considered by the authors to be cryptic species. All species are separated phylogenetically based on sequence of the 16S-23S ITS region. Three distinct ribosomal operons were recovered from the genus, lending difficulty to recognizing further diversity in this morphologically cryptic genus

    Neotypification of Pleurocapsa fuliginosa and epitypification of P. minor (Pleurocapsales): resolving a polyphyletic cyanobacterial genus

    Get PDF
    Strains with complete morphological match to Pleurocapsa fuliginosa and P. minor were isolated from Oahu (Hawaii, USA), with another strain matching P. minor isolated from a wet rock face in Utah (USA). Phylogenetically these baeocyte and pseudofilament producing strains fell in a single well-supported clade among a number of pleurocapsalean strains. They were sister to a clade of baeocyte-producing strains that lack the ability to form pseudofilaments and likely belong in an as-yet-to- be-described genus. Strains putatively named Pleurocapsa are scattered throughout the Pleurocapsales and Chroococcales, indicating a need for clear definition of the genus so that revisionary work and alpha-level taxonomy can move forward. To satisfy this need, P. fuliginosa HA4302-MV1 and P. minor HA4230-MV1 were chosen as neotype and epitype, respectively, establishing the genus based on molecular sequence data. In addition to the distinctive morphology of the genus, all Pleuro- capsa species for which 16S-23S ITS regions are available have an unusually long, branched D5 helix at the termination of the ITS region. The sister clade of strains that lack the ability to form pseudofilaments also possess an unusually long and branched D5 helix as well, suggesting that this feature of the ITS region may be a family-level synapomorphy

    Komarekiella atlantica gen. et sp. nov. (Nostocaceae, Cyanobacteria): a new subaerial taxon from the Atlantic Rainforest and Kauai, Hawaii

    Get PDF
    Six strains of Cyanobacteria sampled in the Brazilian Atlantic rainforest and one strain from Kauai, Hawaii, were studied using morphological and molecular approaches, including 16S rRNA gene phylogenies and 16S–23S ITS secondary structures, and are herein described as Komarekilla atlantica gen. et sp. nov.. Morphologically they are similar to Nostoc, Desmonostoc, Halotia, and Mojavia and indistinguishable from Chlorogloeopsis. The parsimony and Bayesian phylogenies of the 16S rDNA show that these strains are close to nostocacean strains, in strongly supported clades and separated from all other genera. The secondary structures of the 16S–23S ITS were very consistent between strains of K. atlantica, but distinctly different from structures in other close taxa. Of special note, the Hawaiian strain of K. atlantica had 16S sequence identities of 99.5– 100% to the Brazilian strains, and 16S–23S ITS sequence identities of 99.4–99.8% to the Brazilian strains, and consequently likely represents a very recent introduction of the species to Kauai from South America, the geographic source of many of the non–native plants in the Hawaiian Archipelago

    Highly divergent 16S rRNA sequences in ribosomal operons of Scytonema hyalinum (Cyanobacteria)

    Get PDF
    A highly divergent 16S rRNA gene was found in one of the five ribosomal operons present in a species complex currently circumscribed as Scytonema hyalinum (Nostocales, Cyanobacteria) using clone libraries. If 16S rRNA sequence macroheterogeneity among ribosomal operons due to insertions, deletions or truncation is excluded, the sequence heterogeneity observed in S. hyalinum was the highest observed in any prokaryotic species thus far (7.3± 9.0%). The secondary structure of the 16S rRNA molecules encoded by the two divergent operons was nearly identical, indicating possible functionality. The 23S rRNA gene was examined for a few strains in this complex, and it was also found to be highly divergent from the gene in Type 2 operons (8.7%), and likewise had nearly identical secondary structure between the Type 1 and Type 2 operons. Furthermore, the 16S-23S ITS showed marked differences consistent between operons among numerous strains. Both operons have promoter sequences that satisfy consensus requirements for functional prokaryotic transcription initiation. Horizontal gene transfer from another unknown heterocytous cyanobacterium is considered the most likely explanation for the origin of this molecule, but does not explain the ultimate origin of this sequence, which is very divergent from all 16S rRNA sequences found thus far in cyanobacteria. The divergent sequence is highly conserved among numerous strains of S. hyalinum, suggesting adaptive advantage and selective constraint of the divergent sequence
    corecore