3,655 research outputs found

    Spectroscopy of Moses Rock Kimberlite Diatreme

    Get PDF
    Three types of remote sensing data (Airborne Imaging Spectroscopy (AIS), NS001, Zeiss IR-photographs) were obtained for the Moses Rock kimberlite dike in southern Utah. The goal is to identify and characterize the mantle derived mafic component in such volcanic features. The Zeiss and NS001 images provide information on the regional setting and allow units of the dike to be distinguished from surrounding material. A potential unmapped satellite dike was identified. The AIS data provide characterizing information of the surface composition of the dike. Serpentized olivine-bearing soils are (tentatively) identified from the AIS spectra for a few areas within the dike

    Multispectral mapping of the lunar surface using groundbased telescopes

    Get PDF
    Images of the lunar surface were obtained at several wavelengths using a silicon vidicon imaging system and groundbased telescopes. These images were recorded and processed in digital form so that quantitative information is preserved. The photometric precision of the images is shown to be better than 1 percent. Ratio images calculated by dividing images obtained at two wavelengths (0.40/0.56 micrometer) and 0.95/0.56 micrometer are presented for about 50 percent of the lunar frontside. Spatial resolution is about 2 km at the sub-earth point. A complex of distinct units is evident in the images. Earlier work with the reflectance spectrum of lunar materials indicates that for the most part these units are compositionally distinct. Digital images of this precision are extremely useful to lunar geologists in disentangling the history of the lunar surface

    Oxidized basalts on the surface of Venus: Compositional implications of measured spectral properties

    Get PDF
    Venera Lander reflectance data are compared with high temperature spectra of the same basaltic materials. The dark, flat unoxidized basalts are still inconsistent with the Venera data in the near-infrared. Basaltic material with a ferric component, however, would satisfy both the increase in reflectance beyond 0.7 microns as well as the dark, relatively colorless character in the visible. Therefore, it is concluded that besaltic surfaces of Venus represented by these measurements either contain minerals with uncommon characteristics, or, more likely, are relatively oxidized

    Orientale and South Pole-Aitken basins on the Moon: Preliminary Galileo imaging results

    Get PDF
    During the Earth-Moon flyby the Galileo Solid State Imaging System obtained new information on the landscape and physical geology of the Moon. Multicolor Galileo images of the Moon reveal variations in color properties of the lunar surface. Using returned lunar samples as a key, the color differences can be interpreted in terms of variations in the mineral makeup of the lunar rocks and soil. The combined results of Apollo landings and multicolor images from Galileo allow extrapolation of surface composition to areas distant from the landing sites, including the far side invisible from Earth

    Comparison of reflectance spectra of C asteroids and unique C chondrites Y86720, Y82162, and B7904

    Get PDF
    Reflectance spectra (0.3-2.6 microns) of 11 carbonaceous (C) chondrite powders (less than 100 or less than 125 microns) including 'unique' ones Y86720, Y82162, and B7904, have been measured and compared with those of 14 C asteroids. Among those C chondrites, only three 'unique' ones had close counterparts among C asteroids (Y86720 and 1 Ceres, Y82162 and 704 Interamnia, and B7904 and 31 Euphrosyne). Mixing calculations of those C chondrites by Hapke's isotropic model were also performed to improve fits of reflectance spectra of all the 14 C asteroids. If the grain-size distributions of those asteroid surfaces are similar to those C chondrite powders, the result suggests that all tested C asteroids contain a high amount of heated C chondrite material, such as Y86720, Y82162, and B7904

    Space Weathering of Ordinary Chondrite Parent Bodies, Its Impact on the Method of Distinguishing H, L, and LL Types and Implications for Itokawa Samples Returned by the Hayabusa Mission

    Get PDF
    As the most abundance meteorites in our collections, ordinary chondrites potentially have very important implications on the origin and formation of our Solar System. In order to map the distribution of ordinary chondrite-like asteroids through remote sensing, the space weathering effects of ordinary chondrite parent bodies must be addressed through experiments and modeling. Of particular importance is the impact on distinguishing different types (H/L/LL) of ordinary chondrites. In addition, samples of asteroid Itokawa returned by the Hayabusa spacecraft may re~ veal the mechanism of space weathering on an LLchondrite parent body. Results of space weathering simulations on ordinary chondrites and implications for Itokawa samples are presented here

    Spectrophotometric properties of dwarf planet Ceres from the VIR spectrometer on board the Dawn mission

    Get PDF
    We study the spectrophotometric properties of dwarf planet Ceres in the VIS-IR spectral range by means of hyper-spectral images acquired by the VIR imaging spectrometer on board the NASA Dawn mission. Disk-resolved observations with a phase angle within the 7∘<α<132∘7^{\circ}<\alpha<132^{\circ} interval were used to characterize Ceres' phase curve in the 0.465-4.05 μ\mum spectral range. Hapke's model was applied to perform the photometric correction of the dataset, allowing us to produce albedo and color maps of the surface. The VV-band magnitude phase function of Ceres was fitted with both the classical linear model and H-G formalism. The single-scattering albedo and the asymmetry parameter at 0.55μ\mum are w=0.14±0.02w=0.14\pm0.02 and ξ=−0.11±0.08\xi=-0.11\pm0.08, respectively (two-lobe Henyey-Greenstein phase function); the modeled geometric albedo is 0.094±0.0070.094\pm0.007; the roughness parameter is θˉ=29∘±6∘\bar{\theta}=29^{\circ}\pm6^{\circ}. Albedo maps indicate small variability on a global scale with an average reflectance of 0.034±0.0030.034 \pm 0.003. Isolated areas such as the Occator bright spots, Haulani, and Oxo show an albedo much higher than average. We measure a significant spectral phase reddening, and the average spectral slope of Ceres' surface after photometric correction is 1.1%kA˚−11.1\%k\AA^{-1} and 0.85%kA˚−10.85\%k\AA^{-1} at VIS and IR wavelengths, respectively. Broadband color indices are V−R=0.38±0.01V-R=0.38\pm0.01 and R−I=0.33±0.02R-I=0.33\pm0.02. H-G modeling of the VV-band magnitude phase curve for α<30∘\alpha<30^{\circ} gives H=3.14±0.04H=3.14\pm0.04 and G=0.10±0.04G=0.10\pm0.04, while the classical linear model provides V(1,1,0∘)=3.48±0.03V(1,1,0^{\circ})=3.48\pm0.03 and β=0.036±0.002\beta=0.036\pm0.002. The comparison with spectrophotometric properties of other minor bodies indicates that Ceres has a less back-scattering phase function and a slightly higher albedo than comets and C-type objects. However, the latter represents the closest match in the usual asteroid taxonomy.Comment: 14 pages, 20 figures, published online on Astronomy and Astrophysics on 13 February 2017. Revised to reflect minor changes in text and figures made in proofs, updated value of V-R and R-

    Preliminary results of spectral reflectance studies of tycho crater

    Get PDF
    The preliminary analysis and interpretation of near infrared spectra obtained for both the interior and exterior deposits associated with the Tycho crater is presented. Specific objectives were: (1) to determine the composition and stratigraphy of the highland crust in the Tycho target site; (2) to determine the likely composition of the primary ejecta which may be present in ray deposits; (3) to investigate the nature of spectral units defined in previous studies; (4) to further investigate the nature and origin of both the bright and dark haloes around the rim crest; and (5) to compare the compositions determined for the Tycho units with those of the Aristarchus crater as well as typical highland deposits. The spectra obtained for the interior areas exhibit similar spectral features. These include relatively strong 1 micron absorption bands whose minima are centered between 0.97 and 0.99 microns and shallow to intermediate continuum slopes. The spectra generally exhibit indications of a 1.3 micron feature consistent with the presence of Fe(2+) bearing plagioclase feldspar. The strong 1 micron absorption features indicate a dominant high Ca clinopyroxene component. Results obtained from the ejecta deposits show that the spectrum of the inner, bright halo is almost identical with those obtained for interior units. The spectrum of the dark halo exhibits a wide, relatively shallow absorption feature centered at 1.01 microns, a 1.3 micron absorption, and a steep continuum slope. This spectrum is interpreted as indicating the presence of pyroxene, Fe-bearing feldspar, and a significant component of Fe-bearing impact melt glass. Finally, the spectra of spots inside Tycho show similarity with certain spectra for Aristarchus. However, the suite of spectra obtained for Tycho exhibits a different trend in terms of band center versus width

    Crustal heterogeneity of the moon viewed from the Galileo SSI camera: Lunar sample calibrations and compositional implications

    Get PDF
    Summaries are given of the spectral calibration, compositional parameters, nearside color, and limb and farside color of the Moon. The farside of the Moon, a large area of lunar crust, is dominated by heavily cratered terrain and basin deposits that represent the products of the first half billion years of crustal evolution. Continuing analysis of the returned lunar samples suggest a magma ocean and/or serial magmatism model for evolution of the primordial lunar crust. However, testing either hypothesis requires compositional information about the crustal stratigraphy and lateral heterogeneity. Resolution of this important planetary science issue is dependent on additional data. New Galileo multispectral images indicate previously unknown local and regional compositional diversity of the farside crust. Future analysis will focus on individual features and a more detailed assessment of crustal stratigraphy and heterogeneity
    • …
    corecore