14 research outputs found

    CUEDC1 is a primary target of ERα essential for the growth of breast cancer cells

    Get PDF
    Breast cancer is the most prevalent type of malignancy in women with ∼1.7 million new cases diagnosed annually, of which the majority express ERα (ESR1), a ligand-dependent transcription factor. Genome-wide chromatin binding maps suggest that ERα may control the expression of thousands of genes, posing a great challenge in identifying functional targets. Recently, we developed a CRISPR-Cas9 functional genetic screening approach to identify enhancers required for ERα-positive breast cancer cell proliferation. We validated several candidates, including CUTE, a putative ERα-responsive enhancer located in the first intron of CUEDC1 (CUE-domain containing protein). Here, we show that CUTE controls CUEDC1 expression, and that this interaction is essential for ERα-mediated cell proliferation. Moreover, ectopic expression of CUEDC1, but not a CUE-domain mutant, rescues the defects in CUTE activity. Finally, CUEDC1 expression correlates positively with ERα in breast cancer. Thus, CUEDC1 is a functional target gene of ERα and is required for breast cancer cell proliferation

    LncRNA-OIS1 regulates DPP4 activation to modulate senescence induced by RAS

    Get PDF
    Oncogene-induced senescence (OIS), provoked in response to oncogenic activation, is considered an important tumor suppressor mechanism. Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nt without a protein-coding capacity. Functional studies showed that deregulated lncRNA expression promote tumorigenesis and metastasis and that lncRNAs may exhibit tumor-suppressive and oncogenic function. Here, we first identified lncRNAs that were differentially expressed between senescent and non-senescent human fibroblast cells. Using RNA interference, we performed a loss-function screen targeting the differentially expressed lncRNAs, and identified lncRNA-OIS1 (lncRNA#32, AC008063.3 or ENSG00000233397) as a lncRNA required for OIS. Knockdown of lncRNA-OIS1 triggered bypass of senescence, higher proliferation rate, lower abundance of the cell-cycle inhibitor CDKN1A and high expression of cell-cycle-associated genes. Subcellular inspection of lncRNA-OIS1 indicated nuclear and cytosolic localization in both normal culture conditions as well as following oncogene induction. Interestingly, silencing lncRNA-OIS1 diminished the senescent-associated induction of a nearby gene (Dipeptidyl Peptidase 4, DPP4) with established role

    A comprehensive enhancer screen identifies TRAM2 as a key and novel mediator of YAP oncogenesis

    Get PDF
    Background: Frequent activation of the co-transcriptional factor YAP is observed in a large number of solid tumors. Activated YAP associates with enhancer loci via TEAD4-DNA-binding protein and stimulates cancer aggressiveness. Although thousands of YAP/TEAD4 binding-sites are annotated, their functional importance is unknown. Here, we aim at further identification of enhancer elements that are required for YAP functions. Results: We first apply genome-wide ChIP profiling of YAP to systematically identify enhancers that are bound by YAP/TEAD4. Next, we implement a genetic approach to uncover functions of YAP/TEAD4-associated enhancers, demonstrate its robustness, and use it to reveal a network of enhancers required for YAP-mediated proliferation. We focus on EnhancerTRAM2, as its target gene TRAM2 shows the strongest expression-correlation with YAP activity in nearly all tumor types. Interestingly, TRAM2 phenocopi

    Clinical Practice Guidelines on the Treatment of Patients with Cleft Lip, Alveolus, and Palate: An Executive Summary.

    Get PDF
    Significant treatment variation exists in the Netherlands between teams treating patients with cleft lip, alveolus, and/or palate, resulting in a confusing and undesirable situation for patients, parents, and practitioners. Therefore, to optimize cleft care, clinical practice guidelines (CPGs) were developed. The aim of this report is to describe CPG development, share the main recommendations, and indicate knowledge gaps regarding cleft care. Together with patients and parents, a multidisciplinary working group of representatives from all relevant disciplines assisted by two experienced epidemiologists identified the topics to be addressed in the CPGs. Searching the Medline, Embase, and Cochrane Library databases identified 5157 articles, 60 of which remained after applying inclusion and exclusion criteria. We rated the quality of the evidence from moderate to very low. The working group formulated 71 recommendations regarding genetic testing, feeding, lip and palate closure, hearing, hypernasality, bone grafting, orthodontics, psychosocial guidance, dentistry, osteotomy versus distraction, and rhinoplasty. The final CPGs were obtained after review by all stakeholders and allow cleft teams to base their treatment on current knowledge. With high-quality evidence lacking, the need for additional high-quality studies has become apparent

    A comprehensive enhancer screen identifies TRAM2 as a key and novel mediator of YAP oncogenesis

    Get PDF
    BACKGROUND: Frequent activation of the co-transcriptional factor YAP is observed in a large number of solid tumors. Activated YAP associates with enhancer loci via TEAD4-DNA-binding protein and stimulates cancer aggressiveness. Although thousands of YAP/TEAD4 binding-sites are annotated, their functional importance is unknown. Here, we aim at further identification of enhancer elements that are required for YAP functions. RESULTS: We first apply genome-wide ChIP profiling of YAP to systematically identify enhancers that are bound by YAP/TEAD4. Next, we implement a genetic approach to uncover functions of YAP/TEAD4-associated enhancers, demonstrate its robustness, and use it to reveal a network of enhancers required for YAP-mediated proliferation. We focus on EnhancerTRAM2, as its target gene TRAM2 shows the strongest expression-correlation with YAP activity in nearly all tumor types. Interestingly, TRAM2 phenocopies the YAP-induced cell proliferation, migration, and invasion phenotypes and correlates with poor patient survival. Mechanistically, we identify FSTL-1 as a major direct client of TRAM2 that is involved in these phenotypes. Thus, TRAM2 is a key novel mediator of YAP-induced oncogenic proliferation and cellular invasiveness. CONCLUSIONS: YAP is a transcription co-factor that binds to thousands of enhancer loci and stimulates tumor aggressiveness. Using unbiased functional approaches, we dissect YAP enhancer network and characterize TRAM2 as a novel mediator of cellular proliferation, migration, and invasion. Our findings elucidate how YAP induces cancer aggressiveness and may assist diagnosis of cancer metastasis

    A comprehensive enhancer screen identifies TRAM2 as a key and novel mediator of YAP oncogenesis

    No full text
    BACKGROUND: Frequent activation of the co-transcriptional factor YAP is observed in a large number of solid tumors. Activated YAP associates with enhancer loci via TEAD4-DNA-binding protein and stimulates cancer aggressiveness. Although thousands of YAP/TEAD4 binding-sites are annotated, their functional importance is unknown. Here, we aim at further identification of enhancer elements that are required for YAP functions. RESULTS: We first apply genome-wide ChIP profiling of YAP to systematically identify enhancers that are bound by YAP/TEAD4. Next, we implement a genetic approach to uncover functions of YAP/TEAD4-associated enhancers, demonstrate its robustness, and use it to reveal a network of enhancers required for YAP-mediated proliferation. We focus on EnhancerTRAM2, as its target gene TRAM2 shows the strongest expression-correlation with YAP activity in nearly all tumor types. Interestingly, TRAM2 phenocopies the YAP-induced cell proliferation, migration, and invasion phenotypes and correlates with poor patient survival. Mechanistically, we identify FSTL-1 as a major direct client of TRAM2 that is involved in these phenotypes. Thus, TRAM2 is a key novel mediator of YAP-induced oncogenic proliferation and cellular invasiveness. CONCLUSIONS: YAP is a transcription co-factor that binds to thousands of enhancer loci and stimulates tumor aggressiveness. Using unbiased functional approaches, we dissect YAP enhancer network and characterize TRAM2 as a novel mediator of cellular proliferation, migration, and invasion. Our findings elucidate how YAP induces cancer aggressiveness and may assist diagnosis of cancer metastasis

    A promiscuous alpha-helical motif anchors viral hijackers and substrate receptors to the CUL4-DDB1 ubiquitin ligase machinery

    No full text
    The cullin 4-DNA-damage-binding protein 1 (CUL4-DDB1) ubiquitin ligase machinery regulates diverse cellular functions and can be subverted by pathogenic viruses. Here we report the crystal structure of DDB1 in complex with a central fragment of hepatitis B virus X protein (HBx), whose DDB1-binding activity is important for viral infection. The structure reveals that HBx binds DDB1 through an alpha-helical motif, which is also found in the unrelated paramyxovirus SV5-V protein despite their sequence divergence. Our structure-based functional analysis suggests that, like SV5-V, HBx captures DDB1 to redirect the ubiquitin ligase activity of the CUL4-DDB1 E3 ligase. We also identify the alpha-helical motif shared by these viral proteins in the cellular substrate-recruiting subunits of the E3 complex, the DDB1-CUL4-associated factors (DCAFs) that are functionally mimicked by the viral hijackers. Together, our studies reveal a common yet promiscuous structural element that is important for the assembly of cellular and virally hijacked CUL4-DDB1 E3 complexes
    corecore