44 research outputs found

    Long-Lasting Effect of Infant Rats Endotoxemia on Heat Shock Protein 60 in the Pancreatic Acinar Cells: Involvement of Toll-Like Receptor 4

    Get PDF
    Introduction. Lipopolysaccharide endotoxin (LPS) is responsible for septic shock and multiorgan failure, but pretreatment of rats with low doses of LPS reduced pancreatic acute damage. Aim. We investigated the effects of the endotoxemia induced in the early period of life on Toll-like receptor 4 (TLR4), heat shock protein 60 (HSP60) and proapoptotic Bax, caspase-9 and -3 or antiapoptotic Bcl-2 protein expression in the pancreatic acinar cells of adult animals. Material and Methods. Newborn rats (25 g) were injected with endotoxin (Escherichia coli) for 5 consecutive days. Two months later, pancreatic acinar cells were isolated from all groups of animals and subjected to caerulein stimulation (10−8 M). Protein expression was assessed employing Western blot. For detection of apoptosis we have employed DNA fragmentation ladder assay. Results. Preconditioning of newborn rats with LPS increased TLR4, Caspase-9 and -3 levels, but failed to affect basal expression of HSP60, Bax, and Bcl-2. Subsequent caerulein stimulation increased TLR4, Bcl-2, and caspases, but diminished HSP60 and Bax proteins in pancreatic acinar cells. Endotoxemia dose-dependently increased TLR4, Bax, HSP60, and both caspases protein signals in the pancreatic acini, further inhibiting antiapoptotic Bcl-2. Conclusions. Endotoxemia promoted the induction of HSP60 via TLR4 in the infant rats and participated in the LPS-dependent pancreatic tissue protection against acute damage

    Effect of endotoxemia in suckling rats on pancreatic integrity and exocrine function in adults : a review report

    Get PDF
    Background. Endotoxin (LPS), the component of Gram-negative bacteria, is responsible for sepsis and neonatal mortality, but low concentrations of LPS produced tissue protection in experimental studies. The effects of LPS applied to the suckling rats on the pancreas of adult animals have not been previously explored. We present the impact of neonatal endotoxemia on the pancreatic exocrine function and on the acute pancreatitis which has been investigated in the adult animals. Endotoxemia was induced in suckling rats by intraperitoneal application of LPS from Escherichia coli or Salmonella typhi. In the adult rats, pretreated in the early period of life with LPS, histological manifestations of acute pancreatitis have been reduced. Pancreatic weight and plasma lipase activity were decreased, and SOD concentration was reversed and accompanied by a significant reduction of lipid peroxidation products (MDA + 4 HNE) in the pancreatic tissue. In the pancreatic acini, the significant increases in protein signals for toll-like receptor 4 and for heat shock protein 60 were found. Signal for the CCK1 receptor was reduced and pancreatic secretory responses to caerulein were diminished, whereas basal enzyme secretion was unaffected. These pioneer studies have shown that exposition of suckling rats to endotoxin has an impact on the pancreas in the adult organism

    Does apoptosis occur in amyotrophic lateral sclerosis? TUNEL experience from human Amyotrophic Lateral Sclerosis (ALS) tissues

    Get PDF
    The role that apoptosis plays in the pathogenesis of amyotrophic lateral sclerosis (ALS) is still unclear. From our autopsy samples, we have undertaken an effort to verify if apoptosis in ALS really occurs or if can at least be detected. The study was performed using TUNEL method for screening the apoptotic changes in the autopsy samples from 8 ALS cases compared with 16 control cases. No features of apoptosis (DNA cleavages) were noted in any of the investigated regions of the central nervous system in ALS cases as well as in controls. These preliminary results seem to support the reports, which deny the role of apoptosis in human ALS. The following investigations using additional methods will be performed for detection the apoptotic signals in ALS

    Molecular ghrelin system in the pancreatic acinar cells : the role of the polypeptide, caerulein and sensory nerves

    Get PDF
    Ghrelin (GHRL) is an endogenous ligand for the growth hormone secretagogue receptor (GHS-R). Experimental studies showed that GHRL protects the stomach and pancreas against acute damage, but the effect of GHRL on pancreatic acinar cells was still undetermined. Aim: To investigate the effect of GHRL and caerulein on the functional ghrelin system in pancreatic acinar cells taking into account the role of sensory nerves (SN). Methods: Experiments were carried out on isolated pancreatic acinar cells and AR42J cells. Before acinar cells isolation, GHRL was administered intraperitoneally at a dose of 50 µg/kg to rats with intact SN or with capsaicin deactivation of SN (CDSN). After isolation, pancreatic acinar cells were incubated in caerulein-free or caerulein containing solution. AR42J cells were incubated under basal conditions and stimulated with caerulein, GHRL or a combination of the above. Results: Incubation of isolated acinar cells with caerulein inhibited GHS-R and GHRL expression at the level of mRNA and protein in those cells. Either in rats with intact SN or with CDSN, administration of GHRL before isolation of acinar cells increased expression of GHRL and GHS-R in those cells and reversed the caerulein-induced reduction in expression of those parameters. Similar upregulation of GHS-R and GHRL was observed after administration of GHRL in AR42J cells. Conclusions: GHRL stimulates its own expression and expression of its receptor in isolated pancreatic acinar cells and AR42J cells on the positive feedback pathway. This mechanism seems to participate in the pancreatoprotective effect of GHRL in the course of acute pancreatitis

    Capsaicin-sensitive sensory nerves are necessary for the protective effect of ghrelin in cerulein-induced acute pancreatitis in rats

    Get PDF
    Ghrelin was shown to exhibit protective and therapeutic effect in the gut. Aim of the study was to investigate the role of sensory nerves (SN) in the protective effect of ghrelin in acute pancreatitis (AP). Studies were performed on male Wistar rats or isolated pancreatic acinar cells. After capsaicin deactivation of sensory nerves (CDSN) or treatment with saline, rats were pretreated intraperitoneally with ghrelin or saline. In those rats, AP was induced by cerulein or pancreases were used for isolation of pancreatic acinar cells. Pancreatic acinar cells were incubated in cerulein-free or cerulein containing solution. In rats with intact SN, pretreatment with ghrelin led to a reversal of the cerulein-induced increase in pancreatic weight, plasma activity of lipase and plasma concentration of tumor necrosis factor-α (TNF-α). These effects were associated with an increase in plasma interleukin-4 concentration and reduction in histological signs of pancreatic damage. CDSN tended to increase the severity of AP and abolished the protective effect of ghrelin. Exposure of pancreatic acinar cells to cerulein led to increase in cellular expression of mRNA for TNF-α and cellular synthesis of this cytokine. Pretreatment with ghrelin reduced this alteration, but this effect was only observed in acinar cells obtained from rats with intact SN. Moreover, CDSN inhibited the cerulein- and ghrelin-induced increase in gene expression and synthesis of heat shock protein 70 (HSP70) in those cells. Ghrelin exhibits the protective effect in cerulein-induced AP on the organ and pancreatic acinar cell level. Sensory nerves ablation abolishes this effect

    Recurrent mutations of BRCA1, BRCA2 and PALB2 in the population of breast and ovarian cancer patients in Southern Poland

    Get PDF
    Background Mutations in the BRCA1, BRCA2 and PALB2 genes are well-established risk factors for the development of breast and/or ovarian cancer. The frequency and spectrum of mutations in these genes has not yet been examined in the population of Southern Poland. Methods We examined the entire coding sequences of the BRCA1 and BRCA2 genes and genotyped a recurrent mutation of the PALB2 gene (c.509_510delGA) in 121 women with familial and/or early-onset breast or ovarian cancer from Southern Poland. Results A BRCA1 mutation was identified in 11 of 121 patients (9.1 %) and a BRCA2 mutation was identified in 10 of 121 patients (8.3 %). Two founder mutations of BRCA1 accounted for 91 % of all BRCA1 mutation carriers (c.5266dupC was identified in six patients and c.181 T > G was identified in four patients). Three of the seven different BRCA2 mutations were detected in two patients each (c.9371A > T, c.9403delC and c.1310_1313delAAGA). Three mutations have not been previously reported in the Polish population (BRCA1 c.3531delT, BRCA2 c.1310_1313delAAGA and BRCA2 c.9027delT). The recurrent PALB2 mutation c.509_510delGA was identified in two patients (1.7 %). Conclusions The standard panel of BRCA1 founder mutations is sufficiently sensitive for the identification of BRCA1 mutation carriers in Southern Poland. The BRCA2 mutations c.9371A > T and c.9403delC as well as the PALB2 mutation c.509_510delGA should be included in the testing panel for this population

    Synthesis of α1-microglobulin in cultured rat hepatocytes is stimulated by interleukin-6, leukemia inhibitory factor, dexamethasone and retinoic acid

    Get PDF
    AbstractThe secretion or α1-microglobulin by primary cultures of rat hepatocytes was found to increase upon the addition of interleukin-6 or leukemia inhibitory factor, two mediators of acute phase response. This stimulatory effect was further enhanced by dexamethasone. α1-Microglobulin is synthesized as a precursor also containing bikunin, and the precursor protein is cleaved shortly berore secretion. Our results therefore suggest that both α1-microglobulin and bikunin are acute phase reactants in rat hepatocytes. Furthermore, we found that retinoic acid, previously shown to be involved in the regulation of cell differentiation and development, also stimulated α1-microglobulin synthesis. Only free, uncomplexed α1-microglobulin (28,000 Da) was detected in the hopatocyte media, suggesting that the complex between α1-microglobulin and α1-inhibitor 3, found in rat serum, is formed outside the hepatocyte
    corecore