448 research outputs found

    Shape Optimization For Parabolic Troughs Working In Non-Ideal Conditions

    Get PDF
    AbstractThe aim to realize more efficient solar concentrators, improves the research on the best configuration for the mirror surfaces. The optical behavior of a parabolic trough collector is investigated depending on its particular shape outside the ideal conditions. A 2D ray-tracing model of the real systems was realised taking into account a reference value for the solar radiation and different misalignment errors between the light beams and the mirrors axis.The computational analysis shows the relationship among the collection performance and the main geometrical parameters; different boundary conditions bring to consider different optimal configurations for the concentrator shape. Generally for medium concentration levels (50-150x) and non-ideal settings the more efficient parabolas are not characterized by a rim angle equal to 90°, which is the theoretical best value.Among the studied cases, it is interesting to note that a possible working condition for the PT system corresponds to a light beam scattering of 0.5° and a tracking misalignment of 0.2°.With these constrains, imposing high optical performance requirements, a maximum concentration ratio near to 60 can be reached with rim angle values of about 114°

    Neural receiver for CPM signals

    Get PDF

    A real-time siren detector to improve safety of guide in traffic environment

    Get PDF

    Control of skeletal muscle atrophy associated to cancer or corticosteroids by ceramide kinase

    Get PDF
    Apart from cytokines and chemokines, sphingolipid mediators, particularly sphingosine-1-phosphate (S1P) and ceramide 1-phosphate (C1P), contribute to cancer and inflammation. Cancer, as well as other inflammatory conditions, are associated with skeletal muscle (SkM) atrophy, which is characterized by the unbalance between protein synthesis and degradation. Although the signaling pathways involved in SkM mass wasting are multiple, the regulatory role of simple sphingolipids is limited. Here, we report the impairment of ceramide kinase (CerK), the enzyme responsible for the phosphorylation of ceramide to C1P, associated with the accomplishment of atrophic phenotype in various experimental models of SkM atrophy: in vivo animal model bearing the C26 adenocarcinoma or Lewis lung carcinoma tumors, in human and murine SkM cells treated with the conditioned medium obtained from cancer cells or with the glucocorticoid dexamethasone. Notably, we demonstrate in all the three experimental approaches a drastic decrease of CerK expression. Gene silencing of CerK promotes the up-regulation of atrogin-1/MAFbx expression, which was also observed after cell treatment with C8-ceramide, a biologically active ceramide analogue. Conversely, C1P treatment significantly reduced the corticosteroid’s effects. Altogether, these findings provide evidence that CerK, acting as a molecular modulator, may be a new possible target for SkM mass regulation associated with cancer or corticosteroids

    Lung ultrasonography for long-term follow-up of COVID-19 survivors compared to chest CT scan

    Get PDF
    Background: While lung ultrasonography (LUS) has utility for the evaluation of the acute phase of COVID-19 related lung disease, its role in long-term follow-up of this condition has not been well described. The objective of this study is to compare LUS and chest computed tomography (CT) results in COVID-19 survivors with the intent of defining the utility of LUS for long-term follow-up of COVID-19 respiratory disease. Methods: Prospective observational study that enrolled consecutive survivors of COVID-19 with acute hypoxemic respiratory failure (HARF) admitted to the Respiratory Intensive Care Unit. Three months following hospital discharge, patients underwent LUS, chest CT, body plethysmography and laboratory testing, the comparison of which forms the basis of this report. Results: 38 patients were enrolled, with a total of 190 lobes analysed: men 27/38 (71.1%), mean age 60.6 y (SD 10.4). LUS findings and pulmonary function tests outcomes were compared between patients with and without ILD, showing a statistically significant difference in terms of LUS score (p: 0.0002), FEV1 (p: 0.0039) and FVC (p: 0.012). ROC curve both in lobe by lobe and in patient's overall analysis revealed an outstanding ILD discrimination ability of LUS (AUC: 0.94 and 0.95 respectively) with a substantial Cohen's coefficient (K: 0.74 and 0.69). Conclusions: LUS has an outstanding discrimination ability compared to CT in identifying an ILD of at least mild grade in the post COVID-19 follow-up. LUS should be considered as the first-line tool in follow-up programs, while chest CT could be performed based on LUS findings

    Flat bands as a route to high-temperature superconductivity in graphite

    Full text link
    Superconductivity is traditionally viewed as a low-temperature phenomenon. Within the BCS theory this is understood to result from the fact that the pairing of electrons takes place only close to the usually two-dimensional Fermi surface residing at a finite chemical potential. Because of this, the critical temperature is exponentially suppressed compared to the microscopic energy scales. On the other hand, pairing electrons around a dispersionless (flat) energy band leads to very strong superconductivity, with a mean-field critical temperature linearly proportional to the microscopic coupling constant. The prize to be paid is that flat bands can generally be generated only on surfaces and interfaces, where high-temperature superconductivity would show up. The flat-band character and the low dimensionality also mean that despite the high critical temperature such a superconducting state would be subject to strong fluctuations. Here we discuss the topological and non-topological flat bands discussed in different systems, and show that graphite is a good candidate for showing high-temperature flat-band interface superconductivity.Comment: Submitted as a chapter to the book on "Basic Physics of functionalized Graphite", 21 pages, 12 figure

    Vitamin D(3) protects against Aβ peptide cytotoxicity in differentiated human neuroblastoma SH- SY5Y cells: A role for S1P1/p38MAPK/ATF4 axis.

    Get PDF
    Besides its classical function of bone metabolism regulation, 1alpha, 25-dihydroxyvitamin D3 (1,25(OH)2D3), acts on a variety of tissues including the nervous system, where the hormone plays an important role as neuroprotective, antiproliferating and differentiating agent. Sphingolipids are bioactive lipids that play critical and complex roles in regulating cell fate. In the present paper we have investigated whether sphingolipids are involved in the protective action of 1,25(OH)2D3. We have found that 1,25(OH)2D3 prevents amyloid-β peptide (Aβ(1-42)) cytotoxicity both in differentiated SH-SY5Y human neuroblastoma cells and in vivo. In differentiated SH-SY5Y cells, Aβ(1-42) strongly reduces the sphingosine-1-phosphate (S1P)/ceramide (Cer) ratio while 1,25(OH)2D3 partially reverts this effect. 1,25(OH)2D3 reverts also the Aβ(1-42)-induced reduction of sphingosine kinase activity. We have also studied the crosstalk between 1,25(OH)2D3 and S1P signaling pathways downstream to the activation of S1P receptor subtype S1P1. Notably, we found that 1,25(OH)2D3 prevents the reduction of S1P1 expression promoted by Aβ(1-42) and thereby it modulates the downstream signaling leading to ER stress damage (p38MAPK/ATF4). Similar effects were observed by using ZK191784. In addition, chronic treatment with 1,25(OH)2D3 protects from aggregated Aβ(1-42)-induced damage in the CA1 region of the rat hippocampus and promotes cell proliferation in the hippocampal dentate gyrus of adult mice. In conclusion, these results represent the first evidence of the role of 1,25(OH)2D3 and its structural analogue ZK191784 in counteracting the Aβ(1-42) peptide-induced toxicity through the modulation of S1P/S1P1/p38MAPK/ATF4 pathway in differentiated SH-SY5Y cell
    corecore