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ABSTRACT 
Neural networks have been succesfully applied in many $e& 
thanks to their learning and generalization capabilities and to the 
parallel processing and faulr tolerance properties. Typical 
applications concern images processing, pattern recognition and 
digital signal processing, such as adaptive filtering and channel 
equalization. In this paper we propose the use of neural networks 
as digital receiver for  continuous phase modulations (CPM). 
Simulation resuh refer to the European GSM digital cellular 
radw system. Ihe neural receiver pe$onnance has been 
evaluated for a coherent detection, considering an additive white 
Gaussian noise (A WGN) channel and compared with a maximum 
likelihood sequences estimator (MLSE) receiver based on the 
Viterbi algorithm. Ihe paper a k o  presents a hardware 
implementation of the proposed network based on a digital signal 
processor (DSP) and on a programmable gate array (PGA). 

1. INTRODUCTION 
Continuous phase modulation schemes are tipically used in peak- 
power limited transmission systems, such as in digital satellite 
and radio-mobile communications. Their spectral efficiency 
makes CPM signals well suited to narrow bandwidth 
communication systems. On the other hand, because of the signal 
memory, CPM signals need complex receiver structure. 
In this paper we propose the use of neural networks as digital 
receiver for CPM signals. Specifically the neural receiver, 
employing a multilayer perceptron structure (MLP), is aimed to 
the European GSM digital cellular radio system. In radio-mobile 
communications the transmitted signal arrives at the receiver 
passing through different transmission paths having different 
features. Each path can be delayed, timedispersed, attenuated 
and distorted. A Doppler phase shift due to the mobility of the 
mobile station has also to be considered. The combined effect of 
these phenomena gives rise to a time-varying transmission 
channel, thus adaptive receivers are necessary. To compensate 
for the intersymbol interference (ISI) due to the channel memory, 
maximum likelihood demodulators based on the Viterbi algorithm 
and using matched filters are often employed [l], resulting in a 
complex receiver structure. Exploiting the neural networks 
generalization capability our purpose is to realize a self-adaptive 
receiver including channel and phase estimation tasks. Moreover 
thanks to the simple arithmetic operations carried out in parallel 
from several identical units constituting the network, it is 
possible to significantly reduce the receiver hardware complexity 
thus making easier the digital and analogue VLSI 

implementations. Furthermore the parallel distributed processing 
allows the use of large dimension structures keeping low the 
processing time and giving high representation capability and 
fault tolerance to the system. A hardware simulator of the 
proposed neural receiver has been developed so to get the 
receiver working in real time together with a GSM simulator and 
thus overcoming the delay introduced by computer simulations. 
This receiver prototype is based on a DSP and PGA devices. The 
PGA realizes a fast computation of the neurons constituting thc 
network while the DSP can periodically updates the net weights. 
In this paper we present the preliminary results of a largcr 
research effort aimed to the realization of a neural receiver for 
the GSM system. The paper is organized as follow. In section 2 
we briefly review the MLP theory. In section 3 we describe the 
neural receiver structure and present some simulation results 
concerning a received signal passed through an AWGN channel 
and perfectly recovered in time and phase. A performance 
comparison of the neural receiver with a MLSE receiver based 
on the Viterbi algorithm is also presented. The proposed 
hardware simulator is then presented in section 4. Finally section 
5 is reserved for conclusions and aims for future research 
studies. 

2. MULTILAYER PERCEPTRON 
The use of neural nebvorks as digital receiver can be justified 
viewing the demodulation problem as a more general statistical 
classification problem [2]. The neural network architecture 
considered is a feedforward neural net constituted by one or 
more layers of identical units, called neurons, each computing a 
non linear function (e.g. sigmoid) of the weighted sum of the 
unit inputs x,. 

Yi = t<c, W i p j )  (1) 

(3-1 

In the equation (1) wi, denotes the weight connecting the jth node 
to the ith node of the next layer. 
The neurons are connected together so that the output of each 
neuron in one layer feeds the inputs of the neurons in the next 
layer, but no connections exist between neurons in the samc 
layer. This structure, known as multilayer perceptron (MLP) is 
one of the most popular neural networks thanks to the efficient 
supervised training algorithm, the backpropagation algorithm, 
used for weights updating [3]. The backpropagation rule consists 

1 - e+  
f ( h )  = - 

1 + e +  
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in minimizing the error function E on the whole set of training 
patterns (5, d,,} using a gradient-descent method, being 4 the 
desidered output for the pth presentation. 

(3) 

This method can be approximated updating the weight vector on- 
line rather than after the entire training set presentation. In this 
way we can significantly reduce the training time. The network 
weights are iteratively updated according to the following 
equation, being (Y the learning coefficient and p the momentum 
term, 

Awy(n+l) = aO,y, + PAW,+(") 

A w&n) = w,,(n) - w,+(n - 1) 

(4) 

where 
(5 )  

and 
8,  (dj -Yj)f'(' j)  (6) 

aj ="I p p h .  (7) 

for the neurons in the output layer, 

for the neurons belonging to the hidden layers. 
The network performance depends on the network size, the 
training set and from the reached solution in minimizing the 
error function. In fact, one of the major drawback of the 
backpropagation training rule is the possibility of running into 
local minima. Anyway it has been demonstrated that MPL can 
successfully applied to solve statistical classification problems 
since it approximates the Bayes optimal decision rule [4]. 
Furthermore simulation results confirm that the neural network 
based receiver gets very close performance to the MLSE receiver 
representing the optimal solution for an AWGN channel 
including ISI. 

3. COMMUNICATION SYSTEM AND 
RECElVER STRUCTURE 

The transmission system features have been choosen according 
to the standard of the new pan-European digital mobile radio 
system, the ETSI/GSM. This system employes a time-division 
multiple access (TDMA) transmission with 8 slots per carrier. 
All the carriers are located in the &=900 MHz frequency band 
and are spaced by a 200 kHz bandwidth. The adopted modulation 
scheme is the GMSK signaling, with normalized bandwidth 
BT=0.3 and modulation index h=1/2. Before entering in the 
GMSK phase modulator the binary sequence is differentially 
encoded, in such a way that a linear model can be used for the 
transmitted signal [5 ] .  The derotation technique, introducing a 
r I 2  phase shift per symbol interval, allows to get a simplified 
representation of the received signal, which can be demodulated 
taking a finite lenght signal window into consideration [6]. Such 
a signal mantains a r phase uncertainty. The blocks scheme of 
the communication system enploying the neural receiver is 
depicted in Fig. 1 .  
3-1. Receiver structure 
Because of the signal memory, the input vector to the MLP 
consists of the sampled baseband signal belonging to a window 

centered on the symbol interval to be demodulated. To choose 
the observation window length m (number of symbol intervals), 
it has to be considered the intersymbol interference due to the 
adopted partial response modulation and to the limited bandwidth 
of the receiver filter. According to the GSM recommendations 
a receiver filter with a 200 kHz bilateral bandwidth has been 
used to reduce the intersymbol interference between adjacent 
channels. Hence a sampling frequency equal to the bit rate 
(R=270.833 kbitls) correctly represents the signal. The complex 
input signal is splitted in the in-phase (I) and quadrature (Q) 
components, so to get real inputs to the network. Instead of a 
real network, a complex-values MLP and a modified training 
algorithm could be used, as described in literature [7]. Using one 
sample per interval per quadrature components, 2m network 
inputs are required. The network dimension has been established 
after several trials, resulting in a 2-layer perceptron with one 
output neuron and 10 hidden neurons. We shall refer to a such 
network as a 2m-10-1 network. One output neuron is sufficent 
for binary sequences. A threshold criterion which associates 1 to 
positive outputs and 0 to negative outputs has been adopted as 
decision rule in demodulating the received signal. Because of the 
T phase ambiguity, the transmitted sequence or its 
complementary can be reconstructed by the receiver. This 
ambiguity can be eliminated if a piece of the transmitted 
sequence is known at the receiver (e.g. midamble). The 
simulation results reported below refer to a coherent 
demodulation being known the starting phase of the transmitted 
signal exactly recovered in time. 
3.2. Simulation results 
The proposed receiver requires a training phase, during which 
the network weights are evaluated so to minimize the output 
error as described in section 2. For the weights updating a binary 
random sequence has been used, being 0.5 the probability of 
each symbol and the corresponding noisy training pattems have 
been sequentially presented to the network inputs. The network 
weights have been randomly initialized between fO.l. After 
several trials the learning coefficient (Y and the momentum term 
p have been respectivly set to 0.2 and 0.9. We let them decrease 
in time to closer approach the best solution. The network has 
been trained over 100 bursts (14800 bits) referring to the GSM 
system [8] althought it already converges after about 300 steps, 
as shown in Fig. 2. 
The neural receiver performance has been evaluated for an 
AWGN channel in term of bit error-rate (BER) versus energy 
per bit over noise spectral power density EJN,. The network has 
been tested over lo00 bursts. A 5 poles Chebychev receiver filter 
has been used. Since the GMSK modulation with BT=0.3 
spreads the information above about 3 symbol intervals, m gets 
the minimum value of 3. Due to the additional IS1 introduced 
from the receiver filter, larger m values have to be considered. 
The performanceof a 2m-10-1 MLP with m=3,5,7,9 is depicted 
in Fig. 3. A comparison with a MLSE receiver using the Viterbi 
algorithm has also been made [8]. 
The following section proposes a hardware implementation of the 
neural receiver. As it can be seen from Fig. 3, it is not worth 
using m > 5 because it would increase the structure complexity 
getting a negligible performance improvement. Thus a 10-10-1 
network has been considered. 
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4. RECEIVER IMPLEMENTATION 
The hardware implementation of the 10-10-1 structure, proposed 
as neural receiver, is based on the Texas Instruments 
TMS320C30 digital signal processor (DSP) and on the Xilinx 
programmable gate array (PGA) devices (XC3000 and XC4OOO 
families). In this structure the PGA realizes a fast computation 
of the neurons while the DSP updates the net weights. The 
floating point arithmetic of the TMS320C30 and its parallel 
architecture are useful features to implement the backpropagation 
algorithm used to update the net weights. The sigmoid function 
of each neuron is implemented using a look-up table. The DSP 
needs around 1100 processor cycles to execute the 
backpropagation algorithm taking about 66 ps per iteration and 
thus allowing a maximum sample-rate of about 15 ksampleh. 
Using a gate array device it is easy to create parallel structures 
so to get a higher system throughput satisfying the requirements 
for satellite and radio mobile communications. Moreover the 
Xilinx’s configurable logic blocks (CLBs) are well suited to the 
implementation of the simple arithmetic operations required from 
a neuron. The PGA use 5-bit coded weights and input data. The 
< 5,2 > notation will be considered as a fmed point format using 
a two’s complement five bits representation with two bits 
reserved to the integer part of the value (excluding the sign bit). 
Considering the 10-10-1 network, whose weights values at the 
end of the training phase range between about f3, the 
performance degradation is negligible when < $2 >-coded 
weights and inputs are used. 
4.1. Neuron hardware architecture 
The hardware architecture has to compute h=C,X,Wi, where X, 
are the neuron inputs and W, are the neuron weights. This is the 
basic neuron operation, thus only additions and multiplications 
between two < 5,2 >-coded numbers are required. The Xilinx’s 
configurable logic blocks can easily implement logic functions, 
as adders or logic gates, thanks to the combinatorial logic (CL) 
within them. In addition each CLB contains two latches useful 
for the implementation of sequential functions. To get a high 
system throughput serial pipeline multipliers have been used so 
to get a result every (n + 1) clock time intervals, where n is the 
number of bits used to code the absolute value of the input 
signal. The result is truncated to the (n+ l )  most significative 
(MS) bits [9].  We consider n=4. Figure 4.a shows the 
multiplication between two sign-magnitude (SM) five bit coded 
numbers, where xJx2xIx,,, w,w2w,wo represent the amplitude bits 
of the numbers. This structure is correctly working with positive 
numbers only, so the sign bit must be considered in a separate 
way. This problem is easy to solve XOR-ing the sign bits Sx, Sw 
of the two numbers to be multiplied to get the sign of the result. 
From a hardware point of view the two’s complement (C2) 
representation is much more convenient of the SM representation 
if an adder has to be developed, since subtractions are considered 
in the same way of additions and therefore full-adders can be 
used. That is why the SM output of the pipeline multiplier is 
converted in a C2 format. The resulting structure, which we will 
refer as basic neural element (BNE), is shown in Fig. 4.b. The 
figure also shows the serial inclusion of the sign bit in the C2 
multiplication result. For this sign-extension an additional bit 
equal to 0 has to be considered at the end of the input signal X. 
Hence, we get a complete C2 result after (n+2) clock intervals. 

If this structure is repeated N times, where N is the number of 
inputs to the neuron, and the N obtained outputs are added 
together, we get the desidered output h. Figure 5.a shows how 
the BNEs are arranged to get the neuron implementation. The 
look-up table implementation of the activation function f(h) is 
performed through the five C2 bits of the result used to address 
a 32-word table formed with two CLs of two different CLBs. 
The sign bit is used to address one of the two CLs. In so doing 
we get a five bits SM coded output, including the sign bit, that 
is used as input to the other neurons (see Fig. 5.b). The table has 
to be addressed once every 6 clock intervals. 
4.2. CLB and memory requirements 
About six CLBs per BNE are needed thus requiring 726 CLBs 
for the eleven neurons forming the 10-10-1 neural net. When the 
CLBs needed for the activation functions and for the two tapped 
delay l i e s  (TDLs) are also taken into account, at least 863 CLBs 
are required for the entire network. 
Using a XC4000 device, which provide an on-chip RAM, is 
possible to get an adaptive receiver thus allowing its use in a 
time-varying channel contest. A training phase on the DSP can 
be periodically started. At the end of the training phase the DSP 
stores the final weights values onto the on-chip RAM of the 
XC4000, so to code up the pre-trained MLP running on the PGA 
device. Hence, a 121 cells PGA RAM is required to store the 
weights values. The XC4020 device satisfies the foregoing 
requirements. 
4.3. Computational time 
Using the structure depicted in Fig. 5.b we get a net output 
result every 6 clock times. The maximum clock frequency which 
can be used working with the Xilinx’s PGA devices is around 
Ftr/3, where Ftr is the specified PGA toggle-rate. Thus, 
considering a PGA having a 100 MHz toggle-rate, the maximum 
input sample-rate is about 5.5 Msamplels. The incoming data 
have therefore to be stored to allow the weights updating 
procedure on the DSP without interfering with the on-line PGA 
calculation. Thanks to the high sample rate achievable, the 
implemented network can process the input GSM data up to 20 
samples per bit. 

5. CONCLUSIONS AND FURTHER CONSIDERATIONS 
In the first part of the paper a brief theoretical study and some 
simulation results demonstrating the possibility of using a 
multilayer perceptron as digital receiver for CPM signals, have 
been presented. Simulation results refer to the GSM 
environment. The performance of the neural receiver has shown 
to closely approximate that of the optimum MLSE receiver for 
a coherent detection in a contest of an AWGN channel. A 
hardware implementation of the 10-10-1 neural receiver, based 
on DSP and gate array devices, has been proposed in the second 
part of the paper. The high system throughput is perfectly 
suitable for GSM specifications. Moreover it can be used in a 
time-varying channel contest so as to implement adaptive training 
schemes. A more general evaluation board, based on Xilinx 
devices working in parallel, is currently being developed. 
Future efforts are aimed to investigate the behaviour of larger 
dimension networks in demodulating multipath and Doppler 
affected signals, so to design a self-adaptive receiver able to 
operate in a time-varying contest without retraining. Different 
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architectures either including feedback connections or considering 
different activation functions are also worth of further studying. 
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Fig. 1. Blocks scheme of the communication system employing 
the neural receiver. 
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Fig. 2. MLP 10-10-1: absolute value of the output error during 
the training phase ($M0=8 dB). 
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Fig. 4. (a) 4-bit pipeline multiplier structure (n=4); (b) basic 
neural element (BNE). 

Fig. 5. (a) Neuron structure; (b) look-up table implementation of 
the neuron activation function. 
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