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ABSTRACT
A system based on a modified pitch detection method is proposed
that can be used for the detection of acoustical signals the frequency
components of which vary according to specific periodic patterns.
Usually, signals of this category are produced by the siren of an
emergency vehicle. The detection of this type of signals can im-
prove the safety of guide for hearing impaired people by alerting
the driver with a visual indication for example by putting on a light
point on the map of a navigator device. This paper discusses the
development of a small, inexpensive Atmel microcontroller based
siren detection system that is capable of discriminate the siren sig-
nal respect to other sound sources in the traffic. The siren detector
is tested on real signals acquired and recorded in city streets with
many traffic, different other sound sources (automobile horns, anti-
theft alarms,motor noisy etc.) and the presence of a siren approach-
ing. The performance of the detector in terms of false alarm rate
and missing of the siren signal is analyzed varying different vari-
able parameters .

1. INTRODUCTION

Emergency vehicles (including police, fire and paramedic) often use
high amplitude screeching sirens to warn road users and pedestrians
that the emergency vehicle is approaching. A visual alarm provided
by the detection of the emergency veichle sound can improve the
safety of guide for people with hearing impairements . The Eu-
ropean normative only permits for emergency vehicles the use of
high/low series of tones. The siren signal for ambulance and fire
vehicles alternates two tones respectively at the frequencies of 392
Hz (Sol natural) e 660 Hz (Mi natural). A cycle includes a tone at
392 Hz for a period of 1/3 of the total cycle duration, a tone at 660
Hz for a period of 1/18 of the total duration, a tone at 392 Hz for
a period of 1/18 of the total, a tone at 660 Hz for a period of 1/18
of the total duration, a tone at 392 Hz for a period of 1/3 of total
duration, a tone at 660 Hz for a period of 1 /18 of the total cycle
duration, a tone at 392 Hz for a period of 1/18 of the total duration,
a tone at 660 Hz for a period of 1/18 of the total length cycle. The
sounds must succession without interruptions and without apprecia-
ble overlap. The duration of thecomplete cycle is 3 sec. + / - 0.5 sec.
Between a cycle and the next there may be a pause whose duration
should not exceed 0.2 sec.
For the police vehicles the tones are equally interspaced at the fre-
quencies of 466 Hz (La Diesis) and 622 Hz (Re Diesis). The range
of frequencies of the siren for police services is contained in the
range of frequencies for emergency vehicles. A cycle includes a
tone at 466 Hz without interruptions and without appreciable over-
lap from a tone at 622 Hz, followed by yet another tone at 466 Hz
and one at 622 Hz. The cycle must take place in a time equal to 3
sec. + / - 0.5 sec. This includes any interval between a complete
cycle noise and the next. The pause should not exceed the period of
0.2 sec.

Therefore, two qualities are distinctive of a typical pure siren signal:
the frequency content and the periodic repetition.
Although the siren sound consists of a number of harmonic spectral
components, the one corresponding to the lowest frequency is the
dominant. The periodic alteration of the frequency of this dominant
component can be visualized as a curve that relates the current value
of frequency with time. This curve, which is called the frequency
characteristic curve of the siren (FCC), may be considered as pat-
tern and thus the problem of siren identification reduces to a pattern
recognition task.
Unfortunately, the electronically generated sirens are supplied from
a siren generator whose output is a square wave from a saturating
push-pull type output stage. The fundamental of the square wave
is the required siren frequency, but many harmonics also exist. The
spectral purity of the real siren signal is very poor and the frequen-
cies generated depend also upon vehicle speed, siren age and more-
over automobile horns present a frequency spectrum with dominant
component.
Therefore, techniques based on spectral analysis (such as FFT or
Short Time Fast Discrete Fourier Transform (ST-FDFT)) besides
being computational expensive often they do not detect the correct
dominant frequency components of the siren sound because they
can not be present or they can be overlapped by other components.
Method based on the use of filter bank centered on the Hi and Low
frequencies do not also detect all the siren power. The method of
detection must take advantage of the long duration of the siren sig-
nal, lasting at least some seconds respect to other sound sources
present in the traffic environment which are usually of short dura-
tion. The paper discusses the use of pitch detection algorithm capa-
ble of extracting the periodic (siren) signal from aperiodic (speech,
automobile horn) ones. In the following the pitch detection algo-
rithm modified for a detection in real time of the siren signal,is ex-
plained. In Section 3 the results obtained during a test validation
trial in different condition of traffic are provided. The performance
of the detector in terms of false alarm rate and missing of the siren
signal is analyzed varying different variable parameters and con-
sidering different sound sources(speech, automobilke horn, music )
which can stress the proper functioning of the pitch detector.

2. SIREN DETECTION PROCESSING

The problem of the siren detection has been attacked with a process
working on two levels. First MDF (Module Difference Function),
a time domain technique, aims to classify each portion of the audio
signal as pitched or unpitched.This first step can be divided in: MDF
calculation and Peak Searching. The peak searching gives us the
estimation of the pitch frequency. At the end of the first phase we
obtain a signal representing the pitch evolving over time, we call
this Pitch(t).

Secondly, Pitch(t) is analysed in order to recognise a time pat-
tern of the desired siren type and declare presence or absence of the
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siren.

2.0.1 Pitch Detection: MDF calculation and Peak Searching

The implementation of a pitch detection algorithm can be realised
in various ways. Here we estimate the pitch finding the delay for
which the verisimilitude between the signal and a delayed copy of
the same signal is maximised. The delay can be found with the
correlation function. Classical correlation function needs to be im-
plemented with additions and multiplications:

Rxx( j) =
L−1

∑
n=0

xnx∗n− j (1)

Since a lightweight implementation for portable device was the fo-
cus of the research, we avoid multiplications implementing MDF.
MDF obtain completely comparable results respect to the correla-
tion function, at least for the aim of searching the lowest frequency
periodicity of the signal. MDF has less computational load espe-
cially on power-limited devices without hardware multiplicators.
MDF is defined as following:

MDF(l,m) =
m

∑
n−m−L+1

|s(n)− s(n− l)| (2)

where s(n) is the audio sampled signal, s(n− l) is the delayed audio
signal, l is the delay (or lag), m is the time index which will be
neglected afterwards, L is the length of the of the window on which
MDF is calculated, [1-4].

MDF simply operates with absolute values and additions be-
tween specifically delayed copies of the signal, [1].

MDF(l) is calculated varying the lag value. We obtain a func-
tion over the lag domain. The minimum value of l represent the
inverse of the fundamental pitch of the audio signal.

The shape of the MDF(l) function deeply depends on the ratio
between the power spectrum of the pitched signal and the power of
unpitched components summed with the noise.

MDF(l) can be calculated only for a specific delay interval cor-
responding to the inverse of the frequency range searched:

{lmin, lMAX} ≈
{

1
fMAX

,
1

fmin

}
(3)

The approximate relation holds because fmin, fMAX ∈ R where in-
stead lag values are discrete with accuracy step of the inverse of the
sampling frequency.

In Fig. 1, it is reported the analysis for a signal with a pitched
component at 660Hz.

It’s evident that choosing the sampling frequency fc has a di-
rect impact on the fMAX which is detectable by the process. Vir-
tually, in presence of a SNR = ∞ we could state that the minimum
fMAX = fc. However, noise and unpitched components degrades the
MDF output because each output value is calculated considering all
L samples inside the analysis window. In section 3.2, designing pa-
rameters are reported for the MDF audio buffer length based also
on various audio sampling frequencies.

As seen in Fig. 1, MDF(l) reports several local minimums. The
number of minimums inside the output is related to the length of the
analysis window.

The pitch detection phase thus needs a peak searching algo-
rithm. The peak searching algorithm concentrates in the frequency
band of the desired signal. Different siren specification are available
depending on Country Regulatory Bodies. However, in the case
where different pitches are to be searched, parallel peak searching
algorithms can work with different band settings. The smaller the
searching frequency range, more immunity to noise and unpitched
signal but higher probability to miss the classification of a pitched
signal when the PUNR is low, where we define PUNR as the ratio
between the desired signal and interference and noise as: PUNR,
Pitched to Unpitched and Noise Ratio.
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Figure 1: Pitched audio signal with 660 Hz tone
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Figure 2: Pitch of a two-tones siren with high and low tones over
1 second. It’s possible to see the signal marked unpitched in the
transitions between high and low tones: the signal has no dominant
pitch in this regions.

After MDF calculation, the peak searching algorithm is search-
ing for a local minimum limiting the search in the band of interest:
lmin, lMAX . Some more robust peak search approach can be found in
[1]. The signal is declared pitched if a local minimums is found in
the fundamental band.

2.0.2 Siren Detection

The previous section was explaining the construction of the signal
Pitch(t). Based on this signal a second simple estimator is cal-
culating the probability of the presence of a siren. This value is
compared with a fixed threshold in order to asset a presence flag.
The siren here analysed is a two-tones type: low tones is 392Hz and
high tone is 660Hz.

The rate of the Pitch(t) signal is much lower than fc which is
the operating frequency of MDF. Here the sample rate can calcu-
lated as:

RatePitch(t) =
fc

L · (1−OL)
(4)

where OL is the overlap of the audio portions entering the MDF
function.

For example, with a fc = 8000Hz, MDF is operating at a sample
rate of 125µs while the pattern recognition sample rate is around
16ms, using MDF windows of 512 samples with 75% overlapping.

A presence probability variable Θ is constructed counting the
number of pitches that are inside the specification bands. In Fig. 2



two bands are reported on the vertical axis. These bands are can-
tered on the specification frequencies (392-660 Hz) plus a range
which depends on the maximum Doppler frequency related to the
maximum vehicle velocity and to manufacturing tolerances. We
determined a range of 50Hz accounting for a maximum vehicle ve-
locity of 100Km/h and construction tolerances.

Θ value is calculated on a portion of the Pitch(t) signal. In the
following we reports results for an observation window of 1sec with
an overlapping factor of 50%. Furhter consideration about these
parameters are given in section 3.5.

Complex pattern recognition algorithms are not more effective
then the one here proposed, especially in presence of unpitched or
pitched noise. The contemporary presence of a siren and of un-
pitched not desired signal (music, voice, radio) poses great chal-
lenges: in this case, FAR and MISS rates are deeply related to
PUNR ratio.

3. RESULTS

In this section we report results obtained both with digitally synthe-
sised and real-time audio signals.

The digitally synthesised signals are obtained with a siren audio
sample registered from an emergency vehicle with zero velocity and
adding AWGN noise or unpitched and pitched registered samples.

Then the algorithm has been tested when operating on an low
power Atmel microprocessor. The audio signal has been samples
with a low-price condenser microphone in urban scenario.The sam-
ple have been classified as an average of 20 independent listeners.
In this section, parameters have been varied in order to optimise the
algorithm performance.

3.1 MDF window length: L
A first fundamental parameter for the performance is the length of
the buffer containing audio samples to be processed by the MDF
function. Design requires a trade-off between:
• long buffers in order to mitigate the effects of noise and not

desired signals
• short buffers to limit the computational load of the MDF calcu-

lation
However, the signal portion analysed by the MDF needs to con-
tain a sufficient number of replicas of the tone at the fundamen-
tal frequency in order to asset a stable estimation. The number of
replica in the audio portion is also connected to number of mul-
tiplicity checks we can afford in the peak searching algorithm, as
explained in section 2.0.1.

In this case, the lowest frequency is specified in the Regulatory
body as 392Hz. The design however considers a lowest frequency
of 342Hz accounting for 50 Hz due to Doppler negative frequency
when the vehicle is moving away from the device and also due to
manufacturing tolerances of the siren itself. Minimum buffers size
then is expressed as:

Lmin = C · 1
flow

· fc (5)

where C is the number of replica included in the buffer.
In Fig. 3 is reported the value of the FAR rate with a fc =

8000Hz. The sample contains a low frequency pitch signal (a car
starting the engine and leaving). The presence variable Θ is con-
structed with the pattern recognition process as specified in section
2.0.2 over the whole sample duration. The performance is gaining
a 60% when passing from 128 to 1024 samples.

In Fig. 4 we report the variable Θ in the case where we have an
emergency vehicle in urban scenario moving along a straight line
with a velocity of around 40 Km/h and 150 meters away from the
sensing device in the closest point. Also in this case there is a deep
increase in the probability of detection.

These two example shows that, in presence of noise and other
disturbing signal, the buffer has to be increased much over the min-
imum theoretical need when analysing clean signals ( L > 121 sam-
ples).
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Figure 3: False Alarm Rate over variable MDF buffer.
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Figure 4: Probability of detection over variable MDF buffer.

3.2 Combined influence of MDF windows length and sampling
frequency
Buffer length and sampling frequency are strictly related when
analysing the performance of the MDF function.

In Fig. 5 results are shown for the combined effect of fc and
L. Sampling frequencies have been chosen as 4.000− 8.000−
11.025Hz. For each of these, buffers lengths of 256− 512− 1024
are shown. The probability variable Θ is shown for different SNR
ratio. The signal is composed with an audio sample of a siren with
no Doppler frequency added with AWGN noise.

From the figure, we can see that a sampling frequency of 4KHz
is leading to very poor performance. This is mainly due to alias-
ing effect; the siren signal has very high energy concentrated on
harmonics, due to the amplifier stage usually used in this equip-
ment. Since the power to be delivered is high and quality is not
of concern, the equipment use amplifiers with relative high Total
Harmonic Distortion, like class D and E amplifiers, sometimes also
drived by a square wave.

The design phase lead to the choice of fc = 8KHz and L = 512
samples. Decision variable Θ is reported in Fig. 5 for a siren sig-
nal with additive AWGN noise with various values of MDF buffer
length and sampling frequencies. SNR ratios are reported in Deci-
bels and are negative (more noise than siren signal).

In Table 1 are reported the values of Θ for SNR ranging from
+10dB to -15 dB. The human hear is almost not able to hear the
siren signal at SNR=-10dB.
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Figure 5: Θ variable for siren signal and AWGN noise for various
value of MDF buffers and audio sampling frequencies.

SRN (dB) Θ
+10 0.983

0 0.979
-10 0.716
-15 0.463

Table 1: Performance in presence of AWGN

3.3 Improving the performance with an high pass audio filter
MDF is very sensitive to low frequency noise. High frequency noise
also in the interest band is easily masked by lower frequencies com-
ponents, even if the power ratio between the two spectrum compo-
nents is much favourable to the noise component. This is not the
case for low frequency noise. This noise tends to mask the real
pitch of the signal also when the power ratio is favourable to the
pitched signal. This can be explained looking at Fig. 6. Low fre-
quency noise is biasing the output of MDF function thus causing
much less reliable minimum detection, since the succession of local
minimums is almost monotonically crescent. Thus the peak search-
ing tends to underestimate the lag position of the minimum, espe-
cially when high tones are to be detected in the range of interest:
[lmin, lMAX ].

The High Pass filter on audio input has been very effective since
various noise sources are concentrated in the lowest part of the fre-
quency spectrum , such as engine frequencies, some wind compo-
nents, wheels rolling on the road and some part of human voice and
music. In Fig. 7 we can see the spectrum of noise, composed by
voice from radio station recorded inside a vehicle while in move-
ment. The peak is around 110 Hz. Fig. 7 illustrates also the spec-
trum components of the siren signal, located around 1300Hz, the
PUNR is +1.43dB.

3.4 Performance in urban environment in presence of pitched
and unpitched noise
The algorithm has been tested also in real operating environment.
Results herein reported are referred to our reference database. This
database represents various operating conditions and includes sam-
ples of pitched noise (radio, voice, music, car horns) and unpitched
noise.

False Alarm and Miss rates have been calculated off-line from
the detection history recorded in the device. Following results are
obtained with multiplicity minimum search as reported in [1]. The
device was operating at the same time with various setting regarding
the multiplicity check threshold th. The variable Θ has been stored.
Results are thus reporting FAR and MISS rates when Θ is compared
to a variable threshold variable between 0 and 1 as reported on the
x axis.

Fig. 8 reports the FAR. FAR is low when the threshold th is
kept low (th = 0.05). However, in this case, MISS rate is higher,
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meaning that we could need more then one single pattern observa-
tion window to asset siren presence. On the other hand, the MISS
rate is decreased if the threshold is higher, as evident in Fig. 9.

3.5 Influence of the Pitch(t) signal window length
The pattern observation window influences the response of the pres-
ence indicator. Throughout this paper, the pattern was analysed with
a window covering one second and overlapping of 50%. Longer
windows will lead to less FAR but higher MISS. Furthermore, if the
dynamic of the response is of main concern, the observation win-
dow should be kept as short as possible, in order to be able to asset
siren presence as quickly as possible. Of course this can generate
much more False Alarms. Again, here the design has to chose the
trade-off between velocity and accuracy of the presence estimator.
To improve the performance without sacrificing the output rate of
the presence estimator, high overlap values are needed.

4. CONCLUSIONS

We have presented a pitch detection algorithm suited for Emer-
gency Vehicle detection in presence of uncorrelated, pitched and
not pitched noise. Optimal parameters have been designed based
on measurements obtained in real operating scenario.
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Figure 8: False Alarm Rate: various thresholds th for the peak
searching with multiplicity check.
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The process has been implemented on an low power Atmel mi-
croprocessor. The process indicates the presence of a siren com-
paring a decision variable with a fixed threshold. As future devel-
opment, aiming at a Constant FAR (CFAR), the presence detection
can operate with dynamically adjusted threshold depending on pa-
rameters of the audio signal at the microphone. In the case a very
noisy audio signal is detected we compare Θ with an higher value
respect to the case when a clean audio is available. In this second
case, with CFAR and adaptive threshold, we can greatly reduce the
probability of an undetected siren signal portion thus leading to a
quicker response of the algorithm when the emergency vehicle is
far away from the driver.
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