48 research outputs found

    Two-photon microscopy : sequential imaging studies in vivo

    Get PDF
    Microscopists have always desired to look inside various organ tissues to study structure, function and dysfunction of their cellular constituents. In the past, this has frequently required tissue extraction and histological preparation to gain access. Traditional optical microscopy techniques, which use linear (one-photon) absorption processes for contrast generation, are limited to use near the tissue surface (< 80 µm) because at greater depths strong and multiple light scattering blurs the images. Scattering particularly strongly affects signal strength in confocal microscopy, which achieves three-dimensional resolution and optical sectioning with a detection pinhole that rejects all light that appears not to originate from the focus. New optical microscopy techniques have been developed that use nonlinear light-matter interactions to generate signal contrast only within a thin raster-scanned plane. Since its first demonstration over a decade ago, two-photon microscopy has been applied to a variety of imaging tasks and has now become the technique of choice for fluorescence microscopy in thick tissue preparations and in live animals. The gain in resolution over conventional in vivo imaging techniques has been several orders of magnitude. Neuroscientists have used it to measure calcium dynamics deep in brain slices and in live animals, blood flow measurement, neuronal plasticity and to monitor neurodegenerative disease models in brain slices and in live rodents. These types of applications define the most important niche for two-photon microscopy - high-resolution imaging of physiology, morphology and cell-cell interactions in intact tissue. Clearly the biggest advantage of two-photon microscopy is in longitudinal monitoring of rodent models of disease or plasticity over days to weeks. The aim of this article is to discuss some methodological principles, and show some applications of this technique obtained from our laboratory in the area of acute experimental stroke research.peer-reviewe

    Vulnerability of white matter to ischemia varies during development

    Get PDF
    Stroke is the one of the leading causes of mortality and morbidity in developed countries. The central role of injury to white matter in the pathophysiology of stroke has been recognised over the recent years. Stroke can affect a wide range of the population (from the premature infant to the elderly) and therefore the mechanism of injury of central white matter may vary with age. The main aim of this review paper is to shed some light on the difference in maturation of injury to the axon-oligodendrocyte unit following an ischemic insult between different developmental stages. Both components of this unit exhibit varying degrees of susceptibility to ischemia throughout their development. Axons are particularly resistant to ischemia in the neonatal stage. However, they show a marked decreased in tolerance to ischemia during the period of myelination. Late oligodendrocyte progenitor cells (OPC) are the most sensitive type of oligodendrocyte, and their role in periventricular leukomalacia (PVL) is well known. On the other hand, early OPC are particularly resistant to ischemia. Studying the effect of ischemia on white matter in the brain during the different developmental stages will lead to a better understanding of the pathophysiology of white matter injury and hopefully, in the future, to the development of new therapeutic strategies of the various white matter diseases.peer-reviewe

    Lateral Habenula contribution in Nicotine addiction : focus on Dopamine, GABA and Serotonin Interactions

    Get PDF
    Compelling evidence has shown a pivotal role of dopaminergic function in drug addiction. Recently, the Habenula (Hb) has attracted a great deal of attention as another target for nicotine in the brain because of its role in regulating dopamine (DA), gamma-aminobutyric acid (GABA) and serotonin (5-HT) systems. Nicotine acts binding to acetylcholine receptors that are widely distributed in the brain. Interestingly, the receptor subtypes that mediate nicotine withdrawal responses are highly expressed in the Hb. Moreover, the block of habenular nicotinic receptors in animals chronically treated with nicotine enhances withdrawal responses once nicotine is discontinued. Furthermore, it has been shown how a high dose of nicotine can cause massive degeneration almost exclusively in the medial habenula (MHb) and its output tract, the fasciculus retroflexus. Thus, symptoms associated with nicotine withdrawal may be caused by dysfunctions of the Hb output. Therefore, Hb might be of fundamental importance in the expression of nicotine reinforcing properties and withdrawal. Here, we will focus on the role of the lateral habenula (LHb) on nicotine modulation of DA function and we will evaluate LHb interaction with the rostromedial tegmental nucleus (RMTg), a GABAergic area, and the serotonergic raphé nuclei. Furthermore, as LHb has high density expression of 5-HT2C receptors, these subtypes might be important in the control of its neuronal activity and output to the midbrain monoaminergic and GABAergic systems.peer-reviewe

    Techniques in Neuroscience

    Get PDF
    Microdialysis cerebral technique has been widely employed in order to study neurotransmitter release. This technique presents numerous advantages such as it allows work with sample in vivo from freely moving animals. Different drugs in different points implanted probes in several brain areas can be infused simultaneously by means of microdialysis. Parkinson’s disease (PD) is a progressive neurodegenerative disorder that is primarily characterized by the degeneration of dopamine (DA) neurons in the nigrostriatal system, which in turn produces profound neurochemical changes within the basal ganglia, representing the neural substrate for Parkinsonian motor symptoms. Over the years, a broad variety of experimental models of the disease have been developed and applied in diverse animal species. The two most common toxin models used employ 6-hydroxydopamine (6-OHDA) and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/1-methyl-4-phenilpyridinium ion (MPTP/MPP+), either given systemically or locally applied into the nigrostriatal pathway, to resemble PD features in animals. Both neurotoxins selectively and rapidly destroy catecholaminergic neurons, although with different mechanisms. Since in vivo microdialysis coupled to high-performance liquid chromatography (HPLC) is an established technique for studying physiological, pharmacological, and pathological changes of a wide range of low molecular weight substances in the brain extracellular fluid, here we describe a rapid and simple microdialysis technique that allows the direct quantitative study of the damage produced by 6-OHDA and MPP+ toxins on dopaminergic (DAergic) striatal terminals of rat brain.peer-reviewe

    Central serotonin2C receptor : from physiology to pathology

    Get PDF
    Since the 1950s, when serotonin (5-HT) was discovered in the mammalian central nervous system (CNS), an enormous amount of experimental evidence has revealed the pivotal role of this biogenic amine in a number of cognitive and behavioural functions. Although 5-HT is synthesized by a small group of neurons within the raphe nuclei of the brain stem, almost all parts of the CNS receive serotonergic projections. Furthermore, the importance of 5-HT modulation and the fine-tuning of its action is underlined by the large number of 5-HT binding sites found in the CNS. Hitherto, up to 15 different 5-HT receptors subtypes have been identified. This review was undertaken to summarize the work that has explored the pathophysiological role of one of these receptors, the 5-HT2C receptor, that has been emerged as a prominent central serotonin receptor subtype. The physiology, pharmacology and anatomical distribution of the 5-HT2C receptors in the CNS will be firstly reviewed. Finally, their potential involvement in the pathophysiology of depression, schizophrenia, Parkinson's disease and drug abuse will be also discussed.peer-reviewe

    Serotonin modulation of the basal ganglia circuitry : therapeutic implication for Parkinson’s disease and other motor disorders

    Get PDF
    Several recent studies have emphasized a crucial role for the interactions between serotonergic and dopaminergic systems in movement control and the pathophysiology of basal ganglia. These observations are supported by anatomical evidence demonstrating large serotonergic innervation of all the basal ganglia nuclei. In fact, serotonergic terminals have been reported to make synaptic contacts with both substantia nigra dopamine-containing neurons and their terminal areas such as the striatum, the globus pallidus and the subthalamus. These brain areas contain a high concentration of serotonin (5-HT), with the substantia nigra pars reticulata receiving the greatest input. In this chapter, the distribution of different 5-HT receptor subtypes in the basal ganglia nuclei will be described. Furthermore, evidence demonstrating the serotonergic control of basal ganglia activity will be reviewed and the contribution of the different 5-HT receptor subtypes examined. The new avenues that the increasing knowledge of 5-HT in motor control has opened for exploring the pathophysiology and pharmacology of Parkinson's disease and other movement disorders will be discussed. It is clear that these avenues will be fruitful, despite the disappointing results so far obtained by clinical studies with selective 5-HT ligands. Nevertheless, these studies have led to a great increase in the attention given to the neurotransmitters of the basal ganglia and their connections.peer-reviewe

    Lateral habenula regulates temporal pattern organization of rat exploratory behavior and acute nicotine-induced anxiety in hole board

    Get PDF
    Nicotine is one of the most addictive drugs of abuse. Tobacco smoking is a major cause of many health problems worldwide, and is the first preventable cause of death. Several findings show that nicotine exerts significant aversive as well as the well-known rewarding motivational effects. Less certain is the anatomical substrate that mediates or enables nicotine aversion. Here we have focused on nicotine-induced anxiety-like behavior in unlesioned and lesioned lateral habenula (LHb) rats. Firstly, we showed that acute nicotine induces anxiogenic effects in rats at the doses investigated (0.1, 0.5, and 1.0 mg/kg, i.p.) as measured by the hole-board apparatus, and manifested in behaviors such as decreased rearing and head-dipping and increased grooming. No changes in locomotor behavior were observed at any of the nicotine doses given. T-pattern analysis of the behavioral outcomes revealed a drastic reduction and disruption of complex behavioral patterns induced by all three nicotine doses, with the maximum effect for 1 mg/kg. Lesion of the LHb induced a significant anxiogenic effect, reduced the mean occurrences of T-patterns detected, and strikingly reverted the nicotine-induced anxiety to an anxiolytic effect. We suggest that LHb is critically involved in emotional behavior states and in nicotine-induced anxiety, most likely through modulating serotonergic/dopaminergic nuclei.peer-reviewe

    Preferential modulation of the lateral habenula activity by serotonin-2A rather than -2C receptors: Electrophysiological and neuroanatomical evidence

    Get PDF
    Aims: Serotonergic (5-HT) modulation of the lateral habenula (LHb) activity is central in normal and pathologic conditions such as mood disorders. Among the multiple 5-HT receptors (5-HTRs) involved, the 5-HT2CR seems to play a pivotal role. Yet, the role of 5-HT2ARs in the control of the LHb neuronal activity is completely unknown. Methods: Single-cell extracellular recording of the LHb neurons was used in rats to study the effect of the general activation and blockade of the 5-HT2CR and 5-HT2AR with Ro 60-0175 and SB242084, TCB-2 and MDL11939, respectively. The expression of both receptors in the LHb was confirmed using immunohistochemistry. Results: Cumulative doses (5-640 \uce\ubcg/kg, iv) of Ro 60-0175 and TCB-2 affected the activity of 34% and 63% of the LHb recorded neurons, respectively. LHb neurons were either inhibited at low doses or excited at higher doses of the 5-HT2A/CR agonists. SB242084 or MDL11939 (both at 200 \uce\ubcg/kg, iv) did not modify neuronal firing when injected alone, but reverted the bidirectional effects of Ro 60-0175 or TCB-2, respectively. 5-HT2CRs and 5-HT2ARs are expressed in less than the 20% of the LHb neurons, and they neither colocalize nor make heterodimers. Strikingly, only 5-HT2ARs are expressed by the majority of LHb astrocyte cells. Conclusions: Peripheral administration of 5-HT2AR agonist promotes a heterogeneous pattern of neuronal responses in the LHb, and these effects are more prominent than those induced by the 5-HT2CR activation

    High dose of 8-OH-DPAT decreases maximal dentate gyrus activation and facilitates granular cell plasticity in vivo

    Get PDF
    Although several studies have emphasized a crucial role for the serotonergic system in the control of hippocampal excitability, the role of serotonin (5-HT) and its receptors in normal and pathologic conditions, such as temporal lobe epilepsy (TLE), is still unclear. The present study was therefore designed firstly to investigate the acute effect of 8-OH-DPAT, a mixed 5-HT1A/7 receptor agonist, at a high dose (1 mg/kg, i.p.) known to have antiepileptic properties, in a model of acute partial epilepsy in rats. For this purpose, a maximal dentate activation (MDA) protocol was used to measure electrographic seizure onset and duration. In addition, the effect of 8-OH-DPAT on in vivo dentate gyrus cell reactivity and short- and long-term plasticity was studied. Rats injected with 8-OH-DPAT exhibited a significant reduction in MDA and epileptic discharges, a decrease in paired-pulse facilitation and an increase in long-term potentiation. This study suggests that 8-OH-DPAT or in general 5-HT1A/7 agonists might be useful for the treatment of TLE and also have some beneficial effects on the comorbid cognitive disorders seen in epileptic patients.peer-reviewe

    Targeting the Serotonin (5-HT) system to control seizures

    Get PDF
    Compelling animal and human evidence suggests that serotonin plays an important role in the pathophysiology of epilepsy as it is involved in iperexcitability, epileptogenesis, seizure generation, depression and psychiatric disorders comorbid with epilepsy. Serotonin involvement in epilepsy is complex; the reasons are twofold i) epilepsy is in reality a spectrum disorder, and ii) serotonin effects vary from one form of epilepsy to another, due also to the different serotonin receptors involved. Here, we will focus on the role of serotonin and its 5-HT2 receptors in absence epilepsy. Our recent pharmacological experimental evidence in GAERS will be reviewed together with our preliminary optogenetic results. 5-HT2C receptor agonists may represent a new approach to interfere with seizure generation and seizure management. Our optogenetic experiments also indicate that by modulating rhythmic cortical activity, optogenetic stimulation of the serotonergic system may provide seizure control without the adverse effects induced by pharmacological activation of 5-HT2C receptors. Thus, targeting the serotonergic system could provide novel insights into the pathophysiological mechanisms of seizure generation and lead to potentially novel treatments.peer-reviewe
    corecore